

Josh Kaufman

THE FIRST 20 HOURS

How to Learn Anything … Fast

Contents

A Note to the Reader

1 A Portrait of the Author as a Learning Junkie

2 Ten Principles of Rapid Skill Acquisition

3 Ten Principles of E�ective Learning

4 Yoga

5 Programming

6 Touch Typing

7 Go

8 Ukulele

9 Windsur�ng

Afterword

Notes

Acknowledgments

ABOUT THE AUTHOR

Josh Kaufman helps people make more money, get more done, and
have more fun. His �rst book, The Personal MBA, is an international

bestseller. He lives in Colorado.

www.personalmba.com

http://www.personalmba.com/

For Lela

THE FIRST 20 HOURS

‘Great opportunities are worthless without skills. No more excuses!
Kaufman proves that we all have the capacity to become experts’

Scott Belsky, founder, Behance, and author of Making Ideas Happen

‘If you’re like me, you’ll get so inspired that you’ll stop reading to apply
this approach to your own procrastinated project. After reading the
�rst �ve chapters I tried his technique to learn a new programming

language, and I’m blown away with how fast I became �uent’
Derek Sivers, founder, CD Baby, sivers.org

‘In this inspiring little book, Josh Kaufman argues that you can get good enough
at anything to enjoy yourself in just 20 hours. All that’s standing between

you and playing the ukulele is your TV time for the next two weeks’
Laura Vanderkam, author of 168 Hours and What the Most

Successful People Do Before Breakfast

‘With the amount of information and change in the world today, the person
who can adapt and learn the most quickly will be the most successful. Kaufman

breaks down the science of learning in useful, entertaining, and fascinating ways.
If you care about keeping your job, your business, or your edge, this book is for you’

Pamela Slim, author of Escape from Cubicle Nation

http://sivers.org/

A Note to the Reader

The lyf so short, the craft so longe to lerne.
—GEOFFREY CHAUCER, PARLEMENT OF FOULES, 1374

“There’s so much I want to do … and so little time.” The story of
modern life.

Take a moment to consider how many things you want to learn
how to do. What’s on your list? What’s holding you back from
getting started?

Two things, most likely: time and skill.
Here’s an uncomfortable truth: the most rewarding experiences in

life almost always require some level of skill. Skills take time and
e�ort to master—time we don’t have, and e�ort we’re reluctant to
contribute.
“I’ll get around to it someday, when I �nd the time.”
It’s easier to sit in front of the television or surf the web, frankly

… so that’s what most of us do, and our desires remain dreams.
Here’s another uncomfortable truth: many things aren’t fun until

you’re good at them. Every skill has what I call a frustration barrier
—a period of time in which you’re horribly unskilled, and you’re
painfully aware of that fact. Why start something when you know
you’re going to be bad at it?

Wouldn’t it be great to be able to master new skills with less
angst? To break through the frustration barrier quickly, so you can
get to the rewarding part? To spend less time slogging through
confusion and doubt, and more time having fun?

Is it possible to acquire new skills less painfully, in a way that
requires far less time and e�ort?

I speak from experience: yes, it’s possible.
This book is about my personal quest to test the art and science of

rapid skill acquisition—how to learn any new skill as quickly as
possible. The purpose of this book is to help you acquire new skills
in record time.

In my experience, it takes around twenty hours of practice to
break through the frustration barrier: to go from knowing
absolutely nothing about what you’re trying to do to performing
noticeably well.

This book is a systematic approach to acquiring new skills as
quickly as possible. The method is universal. It doesn’t matter
whether you want to learn a language, write a novel, paint a
portrait, start a business, or �y an airplane. If you invest as little as
twenty hours in learning the basics of the skill, you’ll be surprised
at how good you become.

Whatever skill you wish to acquire, this book will help you
acquire it in less time and with less wasted energy. With a bit of
focused, strategic e�ort, you’ll �nd yourself performing well
quickly, without the �st-pounding frustration.

In this book, we’ll start with the principles of rapid skill
acquisition: how to go about acquiring new skills as quickly as
possible. These ideas and practices aren’t complicated, so they
won’t take long to learn.

Then, I’ll explain how to use these principles in the real world by
showing you how I acquired the following six new skills in twenty
hours or less each, with no more than ninety minutes of practice per
day.

Developing a personal yoga practice
Writing a web-based computer program
Relearning to touch-type
Exploring the oldest and most complex board game in history

Playing a musical instrument
Windsur�ng

I hope that this book encourages you to dust o� your old “want to
do” list, reexamine it, and commit to learning something new.

Josh Kaufman
Fort Collins, Colorado,

USA

For updates about the material in this book, visit http://first20hours.com/updates.

http://first20hours.com/updates

1

A Portrait of the Author as a Learning
Junkie

I get up every morning determined to both change the world and have one hell of a good
time. Sometimes this makes planning my day di�cult.

—E. B.WHITE, ESSAYIST AND AUTHOR OF CHARLOTTE’S WEB AND THE ELEMENTS OF
STYLE

Hi. My name is Josh Kaufman, and I’m a learning addict.
My home and o�ce shelves are piled high with books, tools, and

unused equipment of all sorts, most of which are slowly
accumulating dust.

I have a “to learn” list hundreds of items long. My Amazon.com
shopping cart currently has 241 items in it—all books I want to
read. I can’t walk into a bookstore without leaving with three or
four new books, to be added to the 852 volumes I already own.

Every day, I come up an idea for another project or experiment,
which I add to my ever-growing “someday/maybe” list. Looking at
everything I want to learn how to do feels overwhelming, so I don’t
look at the list very often.

I want to learn how to improve my publishing business. I want to
learn how to shoot and edit videos. I want to produce an audio
program. I want to learn how to give better seminars and teach
better courses.

I have ideas for a new product, but I don’t know how to build it. I
have ideas for new computer programs, but I don’t know how to

http://amazon.com/

create them. I have more potential writing project ideas in my head
than the time and energy to write them.

I want to learn how to draw. I want to learn how to white-water
kayak. I want to learn �y �shing. I want to learn rock climbing. I
want to be able to play the guitar, the ukulele, the piano, and the
electric violin.

There are games I’ve been interested in for years, like Go, but I
haven’t learned how to play them. I have games that I already
know how to play, like chess, but I’m not very good at them, so
they’re not much fun, and I don’t play them very often.

I like the idea of playing golf, but every game I’ve played turned
into a stoic exercise in laughing o� embarrassment. (I usually say I
play marathon golf: by the end of eighteen holes, I’ve run a
marathon.)

It seems as though every day I add some new skill to the list of
things I want to be able to do, ad in�nitum. So much to learn, so
little time.

By nature, I’m a do-it-yourself kind of guy. If something needs to
be done, I’d rather give it a go myself than look for help. Even if
someone else could do it faster or better, I’m reluctant to rob
myself of the learning experience.

To complicate matters, Kelsey, my wife, runs her own business,
publishing continuing education courses for yoga teachers. Business
is good for both of us, so there’s always a lot to be done.

To make life even more interesting, we welcomed our daughter,
Lela, into the world. Lela is nine months old as I write this.

Before Lela was born, Kelsey and I decided that if we were going
to have kids, we wanted to make raising them ourselves a priority.
One of the major reasons I quit my former management-track job at
a Fortune 500 corporation was to have the �exibility to work from
home, set my own schedule, and spend as much time as possible
with my family.

Kelsey and I share parenting responsibilities equally. Since we’re
a two-business household, Kelsey works in the morning, while I
take care of Lela. In the afternoon, Kelsey takes care of Lela, and I
work until dinnertime. That gives me around twenty-�ve hours each
week to work, plus whatever time I can snatch while Lela is
napping.

After Lela was born, I felt like I barely had enough time to get
my work done, let alone acquire new skills. For a learning addict, it
was crazy-making.

I don’t want to give up on learning and growth completely, even
with my new responsibilities. I don’t have very much free time, but
I’m willing to invest what I have as wisely as possible.

That’s what prompted my interest in what I call rapid skill
acquisition: methods of learning new skills quickly.

I want to continue to acquire new skills, but I don’t want the
process to take forever. I want to pick up the essentials quickly, so I
can make noticeable progress without constantly feeling frustrated.

I’m sure you can relate. How much “free” time do you have each
day, after all of your work and family obligations are complete? Do
you feel like you’d need thirty-six or forty-eight hours in a day to
�nally sit down and learn something new?

There’s an old cliché: “work smarter, not harder.” As it turns out,
the process of skill acquisition is not really about the raw hours you
put in … it’s what you put into those hours.

Damn You, Malcolm Gladwell

In 2008, Malcolm Gladwell wrote a book titled Outliers: The Story of
Success. In it, he set about trying to explain what makes certain
people more successful than others.

One of the ideas Gladwell mentions over and over again is what
he calls the “10,000 hour rule.” Based on research conducted by Dr.
K. Anders Ericsson of Florida State University, expert-level

performance takes, on average, ten thousand hours of deliberate
practice to achieve.1

Ten thousand hours equals eight hours of deliberate practice
every day for approximately three and a half years, with no breaks,
no weekends, and no vacations. Assuming a standard 260 working
days a year with no distractions, that’s a full-time job for almost
�ve years, assuming you spend 100 percent of that time exerting
100 percent of your energy and e�ort.

In practice, this level of focused attention is extremely taxing.
Even world-class performers in ultracompetitive �elds (like music
performance and professional sports) can only muster the energy for
approximately three and a half hours of deliberate practice every
day. That means it can take a decade or more to develop a skill to
mastery.

In essence, if you want to master a new skill, Dr. Ericsson’s
research indicates you’re in for a very long haul. Being the best in
the world at anything, even for a little while, requires years of
relentless practice. If you’re not willing to put in the time and
e�ort, you’ll be overshadowed by those who do.

Outliers shot straight to the top of the non�ction bestseller lists,
and stayed there for three months. Overnight, the “10,000 hour
rule” was everywhere.

As if learning a new skill wasn’t hard enough. Not only do you
have to make time for practice … but you now also have to put in
ten thousand hours? Most of us count ourselves lucky if we can set
aside a few hours a week. Why bother at all if it takes so long to be
good at something?

Look Upon My Works, Ye Mighty, and Despair!

Before you give up all hope, consider this.
There’s an element of Dr. Ericsson’s research that’s very easy to

overlook: it’s a study of expert-level performance. If you’re looking to

become the next Tiger Woods, you’ll probably need to spend at
least ten thousand hours deliberately and systematically practicing
every aspect of golf. Almost every single professional golfer began
playing at a very young age and has been practicing nonstop for at
least seven years. Developing world-class mastery takes time.

On the other hand, what if winning the PGA Tour isn’t your goal?
What if you just want to be good enough at golf that you’re able to
play decently, not embarrass yourself, have a good time, and maybe
have a �ghting chance to win your local country club tournament?

That’s another matter entirely. World-class mastery may take ten
thousand hours of focused e�ort, but developing the capacity to
perform well enough for your own purposes usually requires far less of
an investment.

That’s not to discount the value of what Ericsson calls “deliberate
practice”: intentionally and systematically practicing in order to
improve a skill. Deliberate practice is the core of skill acquisition.
The question is how much deliberate practice is required to reach
your goal. Usually, it’s much less than you think.

Quality, Not Quantity

Embracing the idea of su�iciency is the key to rapid skill acquisition.
In this book, we’re going to discuss developing capacity, not world-
class mastery. We’re going to tackle the steep part of the learning
curve and ascend it as quickly as possible.

Leave the ten thousand hours to the pros. We’re going to start
with twenty hours of concentrated, intelligent, focused e�ort.

We’re shooting for the results we value with a fraction of the
e�ort. You may never win a gold medal, but you’ll reap the
rewards you care about in far less time.

If you ultimately decide to master the skill, you’ll have a better
chance of success if you start with twenty hours of rapid skill
acquisition. By knowing what you’re getting into, learning the

fundamentals, practicing intelligently, and developing a practice
routine, you’ll make progress more quickly and consistently, and
you’ll achieve expert status in record time.

What Is Rapid Skill Acquisition?

Rapid skill acquisition is a process—a way of breaking down the
skill you’re trying to acquire into the smallest possible parts,
identifying which of those parts are most important, then
deliberately practicing those elements �rst. It’s as simple as that.

Rapid skill acquisition has four major steps:

Deconstructing a skill into the smallest possible subskills;
Learning enough about each subskill to be able to practice intelligently and self-
correct during practice;
Removing physical, mental, and emotional barriers that get in the way of practice;
Practicing the most important subskills for at least twenty hours.

That’s it. Rapid skill acquisition is not rocket science. You simply
decide what to practice, �gure out the best way to practice, make
time to practice, then practice until you reach your target level of
performance.

There’s no magic to it—just smart, strategic e�ort invested in
something you care about. With a little preparation, you’ll acquire
new skills rapidly, with less e�ort.

That’s not to say that the results will be instant. The desire for
instant grati�cation is one of the primary reasons people don’t
acquire new skills very quickly.

The “Matrix” Misconception

Remember the scene in The Matrix when Keanu Reeves opens his
eyes, blinks a few times, and whispers “I know kung fu”?

Sorry to break it to you: rapid skill acquisition isn’t that rapid.

Hollywood has done us a great disservice when it comes to skill
acquisition. While it would certainly be nice to be able to learn how
to pilot a Bell 212 helicopter in �ve seconds by uploading software
directly into our brain, science is currently way behind science
�ction.

Until brain uploads become a reality, “rapid” means taking
considerably less time than it would typically take to learn a skill if
you went about the process as most people do: blindly, haphazardly,
and inconsistently.

One of the �rst professional skills I acquired was web
development: being able to build useful, functioning websites.
Beginning with a basic Angel�re.com website in 1996, I taught
myself how to read and write HTML and CSS (the lingua franca of
the web), use Adobe Photoshop to edit images, con�gure web
servers, and maintain the systems that publish my work.

I didn’t learn how to do these things in high school or college.
Although I completed my undergraduate degree in business
information systems, the overlap between what I learned in the
classroom and what I do on a day-to-day basis is essentially nil.

I acquired the skill of web development by trying things at
random and �guring it out as I went along. Every time I stumbled
upon a new technique or tool that promised to enhance my website
or reduce my workload, I experimented with it. Over a long period
of time, my skills improved.

My haphazard approach to acquiring web development skills
served the purpose: I got a job based on those skills, and I now
publish information on the web for a living. Mission accomplished,
from one perspective.

On the other hand, I learned everything the hard way. You could
certainly reach my level of competence in these skills in much less
than �fteen years if you approached the topic in a systematic way.
If you went about practicing these skills intelligently, you could
approach my general level of competence in a month.

http://angelfire.com/

That’s what I mean by rapid skill acquisition. If you could learn
most of what I know about web design in a single focused month
versus �fteen years, that’s a massive improvement. It’s also well
within the realm of possibility.

The amount of time it will take you to acquire a new skill is
largely a matter of how much concentrated time you’re willing to
invest in deliberate practice and smart experimentation and how
good you need to become to perform at the level you desire.

Don’t expect overnight results. Do expect that your total time
invested will be much, much less than it would otherwise be if you
jumped into the process without a strategy.

Before we explore the method in detail, there’s something you
should know: rapid skill acquisition has nothing in common with
how you “learned how to learn” in school. Academic learning and
credentialing have almost zero overlap with skill acquisition, let
alone achieving it quickly.

Skill Acquisition vs. Learning

Like many high school students in the United States, I studied a
foreign language. Every school day for four years, I sat in a Spanish
class. My marks were high: straight As.

Today, aside from saying hola, cómo estás, and muy bien, I can’t
hold a conversation with a native Spanish speaker to save my life. (I
don’t even know what to say if I’m not having a good day.)

On the other side of the spectrum, my friend, Carlos Miceli, grew
up speaking Spanish in Argentina. In high school, Carlos decided he
wanted to speak �uent English, so he made an e�ort to strike up as
many conversations as possible with native-English speakers. In the
process, he discovered Skype and set up his own website, so he
could practice speaking and writing English regularly.
Carlos never took a class. He doesn’t know the formal rules of

English grammar. He can’t even tell you how he knows English.

That isn’t really important. He can speak and write English �uently,
which is what really matters.

Dr. Stephen Krashen, of the University of Southern California, is
an expert in the area of second-language acquisition. One of
Krashen’s primary insights is that language acquisition is di�erent
from language learning.

In school, I learned a lot about Spanish. I learned thousands of
vocabulary words, verb conjugation, and the rules of grammar. I
learned all of these things well enough to pass the tests with �ying
colors.

Those tests, however, had nothing to do with my ability to
exercise the skills of speaking Spanish intelligibly and understanding
a native speaker talking at full speed. If my goal was to be able to
speak Spanish �uently, a few weeks of trying to converse with
people in Spanish would’ve produced better results than four years
of schooling.

At that time, speaking Spanish �uently wasn’t my goal. I just
wanted to ace the �nal exam. Carlos, on the other hand, skipped the
classroom and simply started practicing. Instead of doing verb
conjugation drills, Carlos was practicing what really mattered:
communicating with other people in English.

In terms of e�ectiveness and long-term value, Carlos’s approach
was far superior to mine. No contest.

The True Value of Learning

That’s not to say learning about the skill you’re acquiring isn’t
important. Learning can be extremely important, but not in the way
you’d expect. Learning concepts related to a skill helps you self-edit
or self-correct as you’re practicing.

If you know how to conjugate verbs in Spanish, you’re better able
to self-correct your speech while talking to a native speaker. If you
learn common vocabulary words, you’re better able to understand

what a native speaker is saying, as well as remember an appropriate
word or phrase to use when you get stuck while speaking.

Dr. Krashen calls this the monitor hypothesis. Learning helps you
plan, edit, and correct yourself as you practice. That’s why learning
is valuable. The trouble comes when we confuse learning with skill
acquisition.

If you want to acquire a new skill, you must practice it in context.
Learning enhances practice, but it doesn’t replace it. If performance
matters, learning alone is never enough.

Skill Acquisition vs. Training

There’s also a huge di�erence between skill acquisition and
training. Training, in this context, means improving a skill you’ve
already acquired through repetition. It’s what happens after you’ve
acquired a basic skill if you want to keep improving.

Take running a marathon, for example. Most of us acquired the
skill of running during childhood. Aside from putting one foot in
front of the other and staying on your feet until you’ve covered
26.2 miles, there’s not much in the way of new skills to acquire.

There is, however, a signi�cant amount of necessary exertion
required to strengthen your body and acclimate to the level of
physical �tness it takes to complete a marathon. That exertion and
strengthening process is training. The more you train, the stronger
you become, and the faster you complete the marathon.

There’s also an element of learning involved when running a
marathon: how to sign up to participate in races, how to qualify for
large events like the Boston Marathon, knowing what to expect as
you run, pacing, useful equipment, et cetera.

For example, a small issue like friction between your shirt and
your skin isn’t a big deal if you’re running a 5K, so most runners
don’t think about it. Unnecessary friction becomes a huge deal when
you’re running 26.2 miles.

Fail to prepare in advance and you’re likely to experience the
infamous “bleeding nipples” problem. It’s painful, embarrassing …
and entirely preventable. (Don’t believe me? Google it.)

Training and learning will certainly make it easier to �nish the
race, but they’re not skill acquisition. Without a certain amount of
skill acquisition, training isn’t possible or useful. Preparation and
conditioning can make some forms of skill acquisition easier, but
they can never replace practice.

Relearning how to run at a basic level, however, is skill
acquisition. Techniques like ChiRunning2 help the runner acquire
the skill of moving in a way that minimizes e�ort and loss of
forward momentum between strides. With a bit of practice, the
runner can reacquire the core skill of running, which can then be
reinforced in subsequent training.

Skill Acquisition vs. Education and Credentialing

Despite the high-minded e�orts of teachers and professors around
the world, modern methods of education and credentialing have
almost nothing to do with skill acquisition.

Skill acquisition requires practicing the skill in question. It
requires signi�cant periods of sustained, focused concentration. It
requires creativity, �exibility, and the freedom to set your own
standard of success.

Unfortunately, most modern methods of education and
credentialing require simple compliance. The primary (but unstated)
goal isn’t to acquire useful skills, it’s to certify completion of a
mostly arbitrary set of criteria, established by standards committees
far removed from the student, for the purpose of validating certain
qualities some third party appears to care about.
Creativity, �exibility, and freedom to experiment—the essential

elements of rapid skill acquisition—are antithetical to the

credentialing process. If the standards are too �exible, they’re not
really standards, are they?

Unfortunately, rigorous education and credentialing can actively
prevent skill acquisition. The primary problem is opportunity cost: if
the requirements to obtain the credential are so intense that they
impair your ability to spend time practicing the skills in question,
credentialing programs can do more harm than good.

Take a smart, motivated individual who is interested in starting a
software company. Completing an undergraduate degree in
computer science at a prestigious university usually takes at least
four years.3

At the end of those four years, our newly minted graduate has
spent thousands of hours learning algorithms and analyzing
compilers well enough to pass dozens of examinations, but she is no
closer to founding a software company than she was when she
entered the university. Our unfortunate student has memorized
many things about computer programming, at least temporarily, but
she still doesn’t know how to create a computer program that
people �nd useful enough to purchase.

Starting a software company requires acquiring new skills:
learning programming languages, setting up and maintaining
computer systems, researching available tools and programs,
creating prototypes, �nding early users, obtaining any necessary
funding or �nancing, and handling common business administrative
tasks.

Is there some overlap between starting a startup and obtaining an
educational credential? Sure. But notice the emphasis: most of the
e�ort of obtaining a credential is devoted to the process of meeting
the requirements. Whether or not those requirements actually help
you acquire the skills you need to perform in the real world is a
tertiary concern at best.

In my �rst book, The Personal MBA: Master the Art of Business
(2010), I explained why I decided to skip graduate-level business

education in favor of teaching myself the principles of modern
business practice and starting my own company. By avoiding
business school, and spending my time actually building businesses
instead, I learned a ton, and saved over $150,000 in the process.
Given what I wanted to accomplish, dedicating time to business skill
acquisition on my own was better than business school in every
respect.

If you want to get good at anything where real-life performance
matters, you have to actually practice that skill in context. Study, by
itself, is never enough.

The Neurophysiology of Skill: Brain Plasticity and Muscle Memory

One last thing before we jump into the nuts and bolts of rapid skill
acquisition: you must fully appreciate the fact that you’re capable of
acquiring new skills.

That seems like an odd thing to say, but it’s easy to believe your
skills are �xed—that you’re either good or talented or gifted at
something … or you’re not.

In Mindset: The New Psychology of Success (2007), psychologist
Carol Dweck cites a wide body of research that indicates individuals
commonly hold one of two views of how their minds work.

According to Dr. Dweck, people with a “�xed” mind-set assume
that skills and talents are innate, that you’re born with certain
abilities that are what they are. If a person with a �xed mind-set is
“not good at math,” then extra e�ort practicing math is a waste.
Why bother if you’re never going to be good at it?

People with a “growth” mind-set, on the other hand, assume that
skills and abilities grow with practice and persistence. If a person
with a growth mind-set gets a few math problems wrong, it’s not
because they’re not blessed with good-at-mathness; it’s because
they haven’t practiced enough. With persistence and practice, it’s
only a matter of time before they will master the technique.

Here’s the good news if you �nd yourself falling into the �xed
mindset trap: a wide (and growing) body of research indicates that
all brains are capable of improving skills and capabilities with
practice. Genetic predispositions exist, but they’re very minor
compared to the power of focused, intelligent practice. You can
improve any skill, provided you’re willing to practice.

The human brain is plastic—a term neuroscientists use to indicate
that your brain physically changes in response to your environment,
your actions, and the consequences of those actions. As you learn
any new skill, physical or mental, the neurological wiring of your
brain changes as you practice it.

In the words of Dr. Jon Medina (Brain Rules, 2009) “neurons that
�re together wire together,” forming unique new patterns in the
physical circuitry of your brain. Over time, your neurons begin to
�re in more e�cient patterns in response to the feedback you
receive from your environment as you practice.

If you’re working on a motor skill (that is, a skill that involves
physical movement), you’re always relatively awkward and slow at
�rst. You have to think about everything you’re doing, and you
often make frustrating mistakes. Learning the basics is a constant
struggle.

As you practice, your muscle coordination becomes more
automatic and synchronized with your mental processes. You gain
the ability to pay more attention to the subtle elements of what
you’re doing, and you learn to adjust your approach to the feedback
you get from the environment.

You start doing more of what works, and less of what doesn’t.
Eventually, you’re able to perform without conscious attention to
every detail.

In academic literature, this general process is called the “three-
stage model” of skill acquisition,4 and it applies to both physical
and mental skills. The three stages are

1. Cognitive (Early) Stage—understanding what you’re trying to do, researching,
thinking about the process, and breaking the skill into manageable parts.

2. Associative (Intermediate) Stage—practicing the task, noticing environmental
feedback, and adjusting your approach based on that feedback.

3. Autonomous (Late) Stage—performing the skill e�ectively and e�ciently without
thinking about it or paying unnecessary attention to the process.

This neurophysiological skill acquisition process is happening all
the time, even while you’re reading this sentence. There is no such
thing as a mind in stasis. Your brain is learning, encoding, and
consolidating new skills all the time.

As Dr. Dweck says in Mindset: “Your mind is like a muscle: the
more you use it, the more it grows.” The more you practice, the
more e�cient, e�ective, and automatic the skill becomes.

That’s great news when it comes to rapid skill acquisition. If your
mind and body are capable of learning to perform in new and better
ways, we can �gure out how to make that process faster.

2

Ten Principles of Rapid Skill
Acquisition

I realized that becoming a master of karate was not about learning 4,000 moves but about
doing just a handful of moves 4,000 times.

—CHET HOLMES, AUTHOR OF THE ULTIMATE SALES MACHINE

Now that we’re clear about what skill acquisition really means, let’s
examine how to do it quickly. The intent of this chapter is to give
you a handy checklist for acquiring any new skill.

I �nd it useful to think of these principles as ways to cultivate a
“temporary obsession.” Rapid skill acquisition happens naturally
when you become so curious and interested in something that other
concerns fall away, at least temporarily.

Think of these principles as ways to identify a skill worthy of
temporary obsession, focus on it, and remove distractions or
barriers that distract you from e�ective practice.

Here are the ten major principles of rapid skill acquisition:

1. Choose a lovable project.
2. Focus your energy on one skill at a time.
3. De�ne your target performance level.
4. Deconstruct the skill into subskills.
5. Obtain critical tools.
6. Eliminate barriers to practice.
7. Make dedicated time for practice.
8. Create fast feedback loops.
9. Practice by the clock in short bursts.

10. Emphasize quantity and speed.

Many of these principles may strike you as common sense, and
that’s okay. Remember: simply knowing these principles is not
enough. You must actually use them to reap the rewards.

1. Choose a lovable project.

Karl Popper was one of the greatest philosophers of the twentieth
century. He’s the guy who popularized the idea of scientific
falsifiability. In layman’s terms, if you can’t potentially prove
something wrong via observation or experiment, it’s not actually
science.

Popper said many wise things, but I think the following remark is
among the wisest: “The best thing that can happen to a human
being is to �nd a problem, to fall in love with that problem, and to
live trying to solve that problem, unless another problem even more
lovable appears.”

If you want a formula for living a satisfying, productive life, you
can’t go wrong with that one.

Rapid skill acquisition requires choosing a lovable problem or
project. The more excited you are about the skill you want to
acquire, the more quickly you’ll acquire it.

In practice, �nding a lovable project is a very individual matter.
For example, learning to speak and write Mandarin Chinese is not
on my current list of skills to acquire because I have no urgent need
to learn it at the moment, and I have a lot of other projects I’m
more interested in tackling. If I decide to move to a Mandarin-
speaking part of China in the future, it may become lovable, but I’m
not there yet.

On the other hand, I’m intensely interested in learning how to
play Go, the world’s oldest strategic board game, which originated
in China more than three thousand years ago. It’s a beautiful game,

and I’ve wanted to learn how to play since I stumbled across it
years ago.

Learning to play Go requires study. The rules are simple, but
accurately reading the evolving patterns of alternating black and
white stones on the board is a challenge. Computers have
dominated chess for years now, but even the best computers have a
di�cult time challenging an experienced human Go player.

You naturally learn things you care about faster than things you
don’t. I’m currently more interested in learning how to play Go, so
I’m going to learn Go �rst, and save Mandarin for later.

If you focus on acquiring your prime skill (that is, your most
lovable project) before anything else, you’ll acquire it in far less
time.

2. Focus your energy on one skill at a time.

One of the easiest mistakes to make when acquiring new skills is
attempting to acquire too many skills at the same time.

It’s a matter of simple math: acquiring new skills requires a
critical mass of concentrated time and focused attention. If you only
have an hour or two each day to devote to practice and learning,
and you spread that time and energy across twenty di�erent skills,
no individual skill is going to receive enough time and energy to
generate noticeable improvement.

Internalizing this principle is more di�cult for some people than
others. Personally, I’ve always had a “Renaissance man” sort of
temperament: there are hundreds of things I want to learn at any
given moment, in hundreds of di�erent areas. Emotionally, it’s
di�cult for me to decide to defer learning new things I discover or
hear about.1

When I try to learn everything at once, however, I don’t really
learn anything. Instead of making progress, I spend too much time
switching between di�erent skills, getting frustrated, and moving

on to something else. That’s a recipe for extremely slow skill
acquisition.

Pick one, and only one, new skill you wish to acquire. Put all of
your spare focus and energy into acquiring that skill, and place
other skills on temporary hold. David Allen, author of Getting Things
Done (2002), recommends establishing what he calls a
“someday/maybe” list: a list of things you may want to explore
sometime in the future, but that aren’t important enough to focus
on right now. By adding an item to the list, you’re temporarily
absolving yourself of responsibility for acting or thinking about the
idea until you decide to promote it to active status.

I can’t emphasize this enough. Focusing on one prime skill at a
time is absolutely necessary for rapid skill acquisition. You’re not
giving up on the other skills permanently, you’re just saving them
for later.

3. De�ne your target performance level.

A target performance level is a simple sentence that de�nes what
“good enough” looks like. How well would you like to be able to
perform the skill you’re acquiring?

Your target performance level is a brief statement of what your
desired level of skill looks like. Think of it as a single sentence
description of what you’re trying to achieve, and what you’ll be
able to do when you’re done. The more speci�c your target
performance level is, the better.

De�ning your target performance level helps you imagine what it
looks like to perform in a certain way. Once you determine exactly
how good you want or need to be, it’s easier to �gure out how to
get there. In the words of Charles Kettering, the inventor of the
electric automobile ignition system: “A problem well stated is a
problem half solved.”

How you de�ne your target performance level depends on why
you chose to acquire the skill in the �rst place. If your intent is to
have fun, your target is the point at which you stop feeling
frustrated and start enjoying the practice itself. If your intent is to
perform, what’s the minimum level of performance you’re willing
to accept at �rst?

Once you reach your initial target performance level, you can
always choose to keep going if you wish. The best target
performance levels seem just out of reach, not out of the realm of
possibility.

As a rule, the more relaxed your target performance level, the
more rapidly you can acquire the associated skill. If you’re
operating under a world-class mastery mind-set, this may feel like
cheating: you’re just lowering the bar so you can “win” faster,
right?

That’s exactly what we’re doing, and it’s not cheating.
Remember, world-class mastery is not the end point of rapid skill
acquisition. We’re shooting for capacity and su�ciency at maximum
speed, not perfection.

It’s important to note that some skills have safety considerations,
which you should always include in your target performance level.
Getting hurt (or killed) acquiring a new skill defeats the purpose.

4. Deconstruct the skill into subskills.

Most of the things we think of as skills are actually bundles of
smaller subskills. Once you’ve identi�ed a skill to focus on, the next
step is to deconstruct it—to break it down into the smallest possible
parts. For example, playing golf is a skill that has many
subcomponents: choosing the correct club, driving o� the tee,
hitting out of a bunker, putting, et cetera.

Once the skill is deconstructed su�ciently, it’s much easier to
identify which subskills appear to be most important. By focusing

on the critical subskills �rst, you’ll make more progress with less
e�ort.

Deconstructing a skill also makes it easier to avoid feeling
overwhelmed. You don’t have to practice all parts of a skill at the
same time. Instead, it’s more e�ective to focus on the subskills that
promise the most dramatic overall returns.

Deconstructing the skill before you begin also allows you to
identify the parts of the skill that aren’t important for beginning
practitioners. By eliminating the noncritical subskills or techniques
early in the process, you’ll be able to invest more of your time and
energy mastering the critical subskills �rst.

5. Obtain critical tools.

Most skills have prerequisites to practice and performance. It’s
di�cult to play tennis if you don’t have a tennis racquet, or learn
how to pilot a helicopter if you don’t have access to one.

What tools, components, and environments do you need to have
access to before you can practice e�ciently? How can you obtain
the very best tools you can �nd and a�ord?

Taking a moment to identify critical tools before you start
practicing saves precious time. By ensuring you have the resources
you need before you begin, you maximize your practice time.

6. Eliminate barriers to practice.

There are many things that can get in the way of practice, which
makes it much more di�cult to acquire any skill. These barriers can
be anything from

Significant prepractice effort. Such as misplacing your tools, not acquiring the
correct tools before practicing, or skipping setup requirements.
Intermittent resource availability. Such as using borrowed equipment or relying on
a resource that has limited operating hours.
Environmental distractions. Such as television, ringing phones, and incoming e-
mail.

Emotional blocks. Such as fear, doubt, and embarrassment.

Every single one of these elements makes it harder to start
practicing, and therefore decreases your acquisition speed.

Relying on willpower to consistently overcome these barriers is a
losing strategy. We only have so much willpower at our disposal
each day, and it’s best to use that willpower wisely.

The best way to invest willpower in support of skill acquisition is
to use it to remove these soft barriers to practice. By rearranging
your environment to make it as easy as possible to start practicing,
you’ll acquire the skill in far less time.

7. Make dedicated time for practice.

The time you spend acquiring a new skill must come from
somewhere. Unfortunately, we tend to want to acquire new skills
and keep doing many of the other activities we enjoy, like watching
TV, playing video games, et cetera.

I’ll get around to it, when I �nd the time, we say to ourselves.
Here’s the truth: “�nding” time is a myth.
No one ever “�nds” time for anything, in the sense of

miraculously discovering some bank of extra time, like �nding a
twenty-dollar bill you accidentally left in your coat pocket.

If you rely on �nding time to do something, it will never be done.
If you want to �nd time, you must make time.

You have 24 hours to invest each day: 1,440 minutes, no more or
less. You will never have more time. If you sleep approximately 8
hours a day, you have 16 hours at your disposal. Some of those
hours will be used to take care of yourself and your loved ones.
Others will be used for work.

Whatever you have left over is the time you have for skill
acquisition. If you want to improve your skills as quickly as
possible, the larger the dedicated blocks of time you can set aside,
the better.

The best approach to making time for skill acquisition is to
identify low-value uses of time, then choose to eliminate them. As
an experiment, I recommend keeping a simple log of how you spend
your time for a few days. All you need is a notebook.

The results of this time log will surprise you: if you make a few
tough choices to cut low-value uses of time, you’ll have much more
time for skill acquisition. The more time you have to devote each
day, the less total time it will take to acquire new skills. I
recommend making time for at least ninety minutes of practice each
day by cutting low-value activities as much as possible.

I also recommend precommitting to completing at least twenty
hours of practice. Once you start, you must keep practicing until
you hit the twenty-hour mark. If you get stuck, keep pushing: you
can’t stop until you reach your target performance level or invest
twenty hours. If you’re not willing to invest at least twenty hours
up front, choose another skill to acquire.

The reason for this is simple: the early parts of the skill
acquisition process usually feel harder than they really are. You’re
often confused, and you’ll run into unexpected problems and
barriers. Instead of giving up when you experience the slightest
di�culty, precommitting to twenty hours makes it easier to persist.

Think of this approach as an exercise in grit: you’re not going to
let some silly little issue stop you from doing what you’ve decided
you really want to do. You’ll either solve the problem, or do your
best until you reach the twenty-hour mark. At that point, you’ll be
in a better position to decide how to proceed.

8. Create fast feedback loops.

“Fast feedback” means getting accurate information about how well
you’re performing as quickly as possible. The longer it takes to get
accurate feedback, the longer it will take to acquire the skill.

Take the art of cheese making, for example. The subtle chemical
processes that create �ne cheeses often take months or years to
complete, and there’s no way to rush the process without ruining
the result. If it takes six months to determine whether or not your
cheese is any good, the delay in feedback makes it di�cult to
acquire the skill quickly.

Fast feedback naturally leads to rapid skill acquisition. If feedback
arrives immediately, or with a very short delay, it’s much easier to
connect that information to your actions and make the appropriate
adjustments.

The best forms of feedback are near instantaneous. That’s why
skills like programming can become mildly addictive: you make a
change, and a few milliseconds later the computer tells you whether
or not it worked. If you don’t like the feedback (“my program
crashed!”), make another change and try again.

There are many potential sources of useful feedback. As Atul
Gawande, veteran surgeon and amateur tennis player, explained in
an article in The New Yorker,2 experienced coaches and mentors can
give you immediate feedback on how you’re performing and
recommend necessary adjustments.
Coaches aren’t the only source of fast feedback. Capture devices,

like video cameras, can help you watch yourself as you perform.
Tools like computer programs, training aides, and other devices can
immediately indicate when you make a mistake or something is
amiss.

The more sources of fast feedback you integrate into your
practice, the faster you’ll acquire the skill.

9. Practice by the clock in short bursts.

Our minds are built to learn—to notice patterns, simulate potential
courses of action, and �gure out what’s probably going to happen
next. They’re not built to accurately estimate time—how long

something will take, or how much time you’ve spent doing
something.

In the early phases of practicing a new skill, it’s very easy to
overestimate how much time you’ve spent practicing. When you’re
no good (and you know it), time seems to slow to a crawl, and it
feels like you’ve been practicing for a longer period of time than
you actually have.

The solution for this is to practice by the clock. Buy a decent
countdown timer3 and set it for twenty minutes. There’s only one
rule: once you start the timer, you must practice until it goes o�. No
exceptions.

This simple technique will make it easier to complete longer
periods of sustained practice, even when you get tired or frustrated.

The more periods of sustained practice you complete, the faster
your skill acquisition. Set aside time for three to �ve practice
sessions a day, and you’ll see major progress in a very short period.

10. Emphasize quantity and speed.

When you begin to acquire a new skill, it’s tempting to focus on
practicing perfectly—a recipe for frustration. Your performance, of
course, won’t be anywhere close to perfection.

Instead of trying to be perfect, focus on practicing as much as you
can as quickly as you can, while maintaining “good enough” form.

In Art & Fear (2001), authors David Bayles and Ted Orland share a
very interesting anecdote on the value of volume:

The ceramics teacher announced on opening day that he was dividing the class
into two groups. All those on the left side of the studio, he said, would be graded
solely on the quantity of work they produced, all those on the right solely on its
quality.

His procedure was simple: on the �nal day of class he would bring in his
bathroom scales and weigh the work of the “quantity” group: �fty pounds of pots
rated an A, forty pounds a B, and so on. Those being graded on “quality,”
however, needed to produce only one pot—albeit a perfect one—to get an A.

Well, come grading time a curious fact emerged: the works of highest quality
were all produced by the group being graded for quantity. It seems that while the
“quantity” group was busily churning out piles of work and learning from their
mistakes, the “quality” group had sat theorizing about perfection, and in the end
had little more to show for their e�orts than grandiose theories and a pile of dead
clay.

Skill is the result of deliberate, consistent practice, and in early-
stage practice, quantity and speed trump absolute quality. The faster
and more often you practice, the more rapidly you’ll acquire the
skill.

That’s not to say that you should ignore good form while
practicing. Some skills, particularly skills that require physical
actions or motions, require a certain quality of form to perform
well. If you’re practicing your painting technique, going Jackson
Pollack on one hundred canvases in a day isn’t going to help you if
your aim is to paint lifelike portraits. Technique matters.

First, ensure you’re practicing using form that’s good enough to
satisfy your target performance level. Once you’re practicing in
good form at least 80 to 90 percent of the time, crank up the speed
for faster skill acquisition.

That’s it: ten simple principles that will ensure you go about
practicing your prime skill in the most e�cient and e�ective way
possible.

So Does it Work?

Will this method actually help you acquire skills more quickly?
Research says absolutely.

In academic studies of cognitive and motor skill acquisition,
researchers have noticed a common pattern: when study
participants begin to practice a new skill, their performance always
improves dramatically in a very short period of time. It doesn’t take
much practice at all to go from “very slow and grossly incompetent”
to “reasonably fast and noticeably competent.”

In the literature, this is referred to as the “power law of practice,”
and it appears over and over again. The e�ect has been widely
known among skill acquisition researchers since at least 1926,4 and
it’s been replicated many times since in studies of both physical and
mental skills.5 One study even went so far as to say “any theory of
skill acquisition that does not accommodate the power law function
for learning can be rejected immediately.”6

Academic studies draw the “power law of practice” curve like
this, with performance time on the y-axis and practice events on the
x-axis:

Since time is a quantity that increases, the curve slopes down.
With practice, it takes less time to complete a given task.

It’s interesting to note that if you relabel the y-axis as “how good
you are” (that is, you de�ne performance in more general terms
versus a unit of time), you get the famous and widely known
learning curve:

The general pattern of the learning curve looks like this: When
you start, you’re horrible, but you improve very quickly as you
learn the most important parts of the skill. After reaching a certain
level of skill very quickly, your rate of improvement declines, and
subsequent improvement becomes much slower.
Contrary to popular usage, “steep learning curves” are good, not

bad. The graph makes it clear why: Steep learning curves indicate a
very fast rate of skill acquisition. The steeper the curve, the better
you get per unit of time.

You can think of the checklist I just outlined as a way to
intentionally make your personal learning curve steeper. The
principles themselves are simple techniques that make the �rst two
theoretical stages of the skill acquisition process (cognition and
association) easier to do in practice.

Once you start practicing something new, your skills will
naturally and noticeably improve in a very short period of time. The
trick is to start practicing as quickly as possible. Not thinking about
practicing or worrying about practicing, but actually practicing.

It’s all too easy to feel like you’re investing a lot of time in a skill
without practicing very much at all. If you’ve wanted to learn
something for a long time, you dream about being good at it, but
you’re hesitant to get started, you can spend years of mental and
emotional energy without improving one bit. If you don’t know
where you’re trying to go or don’t have a solid strategy to get

there, you can waste equal amounts of energy in unproductive
wandering.

These ten principles are designed to help you eliminate this
nonproductive thrashing and replace it with activities that are
fundamental to the skill acquisition process. The more time and
energy you spend moving through the �rst two phases of the skill
acquisition process and the less time you spend doing things that
don’t help you, the more quickly you’ll acquire the skill. Simple as
that.

What About Immersion?

This isn’t the only way to go about acquiring new skills, but it’s
certainly the most �exible. Other methods can produce similar
results, but they require more signi�cant tradeo�s.

The most well-known general method of rapid skill acquisition is
immersion: completely changing your environment in a way that
results in constant deliberate practice. If you want to learn to speak
French, for example, learning through immersion would involve
living in France for a few weeks or months.

In general, immersion works. If you move to France, you’ll be
forced to practice your speaking skills every moment of every day
for as long as you’re there. After a few frustrating days adapting to
your new surroundings, you’ll notice your skills improving at a
rapid rate.

Immersion works because it ensures that you complete the crucial
�rst hours of practice without fail: you can’t escape your
environment, so the practice happens automatically.

The downside of immersion is that it usually requires making the
skill your primary focus for an extended period of time. If dropping
all of your commitments, packing your bags, and moving to France
is a workable option, learning French via immersion is a good
strategy.

Unfortunately, most of us have commitments we can’t (or don’t
want to) walk away from: family, work, mortgage payments, et
cetera. In these cases, immersion can be di�cult or impossible.

In the worst-case scenario, the idea of immersion becomes an
active barrier: if you keep waiting for an immersion opportunity
before committing to acquiring a new skill, you can waste years of
valuable time.

Take the immersion opportunities as they come, but don’t count
on them. These techniques are designed to help you acquire new
skills even if you only have an hour or two to spare each day.

Reactivating Old Skills

It’s also important to note that these principles are useful even if
the skill you’re trying to acquire isn’t completely new to you. It’s
entirely possible to use these techniques to reacquire old skills in
record time.

For example, I learned to play the trumpet in high school, and I
practiced enough that I was pretty good at it. Since graduating and
going to college, I haven’t played at all.

If I decided to pick up the trumpet again, it wouldn’t take very
much practice to reactivate the skill. I already know the required
subskills, so I’d focus on embouchure (controlling the muscles
around the lips while blowing into the mouthpiece), reading notes
and recalling the related �nger positions, and reviewing basic music
theory (beats, tempo, dynamics, and expression).

It would only take a few hours of practice to reacquire the skill.
Reactivation would mostly require making time, eliminating
barriers to practice, and practicing by the clock.

Well Begun Is Half Done
Sometimes you’ll want to give up the guitar. You’ll hate the guitar. But if you stick with it,

you’re gonna be rewarded.

—JIMI HENDRIX, RENOWNED ELECTRIC-GUITAR PLAYER

You won’t need to use every one of these principles for every skill
you acquire, but you’ll always �nd at least a handful of them
essential.

I �nd it’s useful to think of these principles as a checklist.
Whenever you decide to learn something new, just go though the
checklist and decide which principles apply to your particular
project.

Here’s the checklist for rapid skill acquisition:

1. Choose a lovable project.
2. Focus your energy on one skill at a time.
3. De�ne your target performance level.
4. Deconstruct the skill into subskills.
5. Obtain critical tools.
6. Eliminate barriers to practice.
7. Make dedicated time for practice.
8. Create fast feedback loops.
9. Practice by the clock in short bursts.

10. Emphasize quantity and speed.

That’s it. Apply this checklist to your current prime skill, and
your practice will be more e�ective and e�cient, allowing you to
acquire the skill more quickly.

As I said, this method isn’t rocket science. It’s common sense,
strategy, and preparation applied to a skill you want to improve.
Nothing more, nothing less.

Now, let’s examine how learning and research can make your
skill acquisition process even more e�ective.

3

Ten Principles of E�ective Learning

No problem can withstand the assault of sustained thinking.
—VOLTAIRE

As we discussed in chapter 1, learning isn’t the same thing as skill
acquisition. That, however, doesn’t mean learning is unimportant.
Doing a bit of research before you jump into practice can save you
precious time, energy, and emotional fortitude.

Learning makes your practice more e�cient, which lets you
spend more of your practice time working on the most important
subskills �rst.

In that spirit, here are the ten major principles of e�ective
learning:

1. Research the skill and related topics.
2. Jump in over your head.
3. Identify mental models and mental hooks.
4. Imagine the opposite of what you want.
5. Talk to practitioners to set expectations.
6. Eliminate distractions in your environment.
7. Use spaced repetition and reinforcement for memorization.
8. Create sca�olds and checklists.
9. Make and test predictions.

10. Honor your biology.

1. Research the skill and related topics.

Spend twenty minutes searching the web, browsing a bookstore, or
scanning the stacks at your local library for books and resources
related to the skill. The goal is to identify at least three books,
instructional DVDs, courses, or other resources that appear to be
connected to the skill you’re trying to acquire.

Before you panic, understand that you don’t have to spend hours
memorizing these resources. On the contrary: time spent reading or
watching is not time spent practicing.

You’re not cramming for an exam. The intent of this early
research is to identify the most important subskills, critical
components, and required tools for practice as quickly as possible.
The more you know in advance about the skill, the more
intelligently you can prepare. The goal is to collect a wide body of
knowledge about the skill as quickly as possible, creating an
accurate overview of what the skill acquisition process will look
like.

For rapid skill acquisition, skimming is better than deep reading.
By noticing ideas and tools that come up over and over again in
di�erent texts, you can trust the accuracy of the patterns you notice
and prepare your practice accordingly.

If you want to be able to bake the perfect croissant, pick up a few
good books related to baking and pastries. Instead of reinventing
the process, you’ll �nd existing techniques that have been perfected
over many years by the masters of the �eld. If you see the same
technique or process described in multiple resources, chances are
good it’s important to know.

Once you’ve found what appear to be the most useful techniques,
you can experiment with them in your own kitchen, saving you a
ton of trial and error.

2. Jump in over your head.

Some of your early research will contain concepts, techniques, and
ideas you don’t understand. Often, something will appear
particularly important, but you’ll have no idea what it means.
You’ll read words you don’t recognize, and see practitioners doing
things you can’t fathom.

Don’t panic. Your initial confusion is completely normal. In fact,
it’s great. Move toward the confusion.

Early research is one of the best ways to identify critical subskills
and ideas, but it’s also very likely you won’t know what they mean
yet. The meaning comes later, once you’ve started practicing.

Dr. Stephen Krashen, the language acquisition expert I mentioned
earlier, calls this comprehensible input. By default, the new
information you’re consuming isn’t very comprehensible, since it’s
not connected to anything you know or have experienced. Over
time, the same information will become comprehensible once you
have some experience under your belt. In the words of renowned
yoga teacher T. K. V. Desikachar: “The recognition of confusion is
itself a form of clarity.”

Noticing you’re confused is valuable. Recognizing confusion can
help you de�ne exactly what you’re confused about, which helps
you �gure out what you’ll need to research or do next to resolve
that confusion.

If you’re not confused by at least half of your early research,
you’re not learning as quickly as you’re capable of learning. If you
start to feel intimidated or hesitant about the pace you’re
attempting, you’re on the right track. Provided you’re working on a
lovable problem or project, the more confused you are at the outset,
the more internal pressure you’ll feel to �gure things out, and the
faster you’ll learn.

Not being willing to jump in over your head is the single biggest
emotional barrier to rapid skill acquisition. Feeling stupid isn’t fun,
but reminding yourself that you will understand with practice will
help you move from confusion to clarity as quickly as possible.

3. Identify mental models and mental hooks.

As you conduct your research, you’ll naturally begin to notice
patterns: ideas and techniques that come up over and over again.

These concepts are called mental models, and they’re very
important. Mental models are the most basic unit of learning: a way
of understanding and labeling an object or relationship that exists in
the world. As you collect accurate mental models, it becomes easier
to anticipate what will happen when you take a speci�c action.
Mental models also make it much easier to discuss your experiences
with others.

Here’s an example: I was recently helping my father set up a
website. As I went along, I tried to explain what I was doing. At
�rst, it was frustrating for both of us: I kept using words like
“server,” and he had absolutely no idea what I was talking about.

Once Dad learned that a server is a special computer that delivers
a web page to people who request it, and that the server was a
di�erent computer than the machine we were using, he found it
much easier to understand what we were doing. In this case, server
is a mental model—once you’re familiar with the term, it’s easier to
understand the process of publishing a website.

You’ll also notice a few things that look like something you’re
already familiar with. These are mental hooks: analogies and
metaphors you can use to remember new concepts.

In the case of web servers, imagine a librarian. When you go to
the library and request a speci�c book, a librarian will search
shelves containing hundreds or thousands of books to �nd the exact
book you’re looking for. When the librarian �nds the book, he or
she brings it back for you. If the book can’t be found, the librarian
will tell you “I can’t �nd the book you’re looking for.”

That’s exactly how web servers work. When you request a
speci�c web page, the server will search for that page in memory. If
it �nds the page, it will deliver it to you. If the server can’t �nd the

web page, it will return a message: “Error 404: Page Not Found.”
Thinking of the server software as a “computer librarian” is helpful
when thinking about how the system works.

The more mental models and mental hooks you can identify in
your early research, the easier it will be to use them while you’re
practicing.

4. Imagine the opposite of what you want.

A counterintuitive way to gain insight into a new skill is to
contemplate disaster, not perfection.

What if you did everything wrong? What if you got the worst
possible outcome?

This is a problem-solving technique called inversion, and it’s
helpful in learning the essentials of almost anything. By studying
the opposite of what you want, you can identify important elements
that aren’t immediately obvious.

Take white-water kayaking. What would I need to know if I
wanted to be able to kayak in a large, fast-moving, rock-strewn
river?

Here’s the inversion: What would it look like if everything went
wrong?

I’d �ip upside down underwater, and not be able to get back up.
I’d �ood my kayak, causing it to sink or swamp, resulting in a total loss of the
kayak.
I’d lose my paddle, eliminating my maneuverability.
I’d hit my head on a rock.
I’d eject from my kayak, get stuck in a hydraulic (a point in the river where the
river �ows back on itself, creating a loop like a washing machine) and not be able
to get out.

If I managed to do all of these things at once in the middle of a
raging river, I’d probably die—the worst-case scenario.

This depressing line of thought is useful because it points to a few
white-water kayaking skills that are probably very important:

Learning to roll the kayak right side up if it �ips, without ejecting.
Learning how to prevent swamping the kayak if ejecting is necessary.
Learning how to avoid losing my paddle in rough water.
Learning and using safety precautions when rafting around large rocks.
Scouting the river before the run to avoid dangerous river features entirely.

This mental simulation also gives me a shopping list: I’d need to
invest in a �otation vest, helmet, and other safety gear.

Now, instead of (1) raft river (2) have fun (3) don’t die, I have a
concrete list of subskills to practice and actions to take to ensure I
actually have fun, keep my gear, and survive the trip.

Inversion works.

5. Talk to practitioners to set expectations.

Early learning helps you set appropriate expectations: What does
reasonable performance for a beginner actually look like?

When you jump into acquiring a new skill, it’s very common to
underestimate the complexity of the task, or the number of
elements involved that are required to perform well. If the skill
involves the possibility of social prestige, the associated mystique
can also cloud early expectations.

Many wannabe rock stars have picked up an electric guitar, only
to �nd it’s extremely di�cult to play well, sing on key, and look
fabulous at the same time. Part of the problem is that “being a rock
star” isn’t a single skill. It’s a bundle of many related subskills, each
of which will require dedicated practice to develop.

Talking to people who have acquired the skill before you will
help dispel myths and misconceptions before you invest your time
and energy. By knowing what you can expect to see as you
progress, you’ll �nd it much easier to sustain your interest in
practice, and avoid becoming discouraged early in the process.

6. Eliminate distractions in your environment.

Distractions are enemy number one of rapid skill acquisition.
Distractions kill focused practice, and lack of focused practice leads
to slow (or nonexistent) skill acquisition. You can preempt this by
taking a few minutes to anticipate and eliminate (or reduce) as
many distractions as possible before you start practicing.

The most signi�cant sources of distraction come in two forms:
electronic and biological.

Your television, phone, and Internet are electronic distractions.
Turn them o�, unplug them, block them, or otherwise remove them
from your environment while you’re practicing unless they’re
absolutely necessary for the practice itself.

Well-meaning family members, colleagues, and pets are biological
distractions. You can’t turn people o�, but you can let them know
in advance that you’ll be unavailable while you’re practicing, which
makes it more likely they’ll respect your practice time without
interrupting.

The fewer distractions you have while practicing, the more
quickly you’ll acquire the skill.

7. Use spaced repetition and reinforcement for memorization.

To make use of material you’ve learned while practicing, you have
to be able to recall related ideas quickly. Many skills require at least
some level of memorization.

Here’s the catch: your memory isn’t perfect. Whenever you learn
something new, you’ll probably forget it unless you review the
concept within a certain period of time. This repetition reinforces
the idea, and helps your brain consolidate it into long-term
memory.

Researchers have found that memory follows a decay curve: new
concepts need to be reinforced regularly, but the longer you’ve
known a concept, the less regularly you need to review it to
maintain accurate recall.

Spaced repetition and reinforcement is a memorization technique
that helps you systematically review important concepts and
information on a regular basis. Ideas that are di�cult to remember
are reviewed often, while easier and older concepts are reviewed
less often.

Flash card software programs like Anki,1 SuperMemo,2 and
Smartr3 make spaced repetition and reinforcement very simple.
Spaced repetition systems rely on a “�ash card” model of review,
and you have to create the �ash cards yourself. By creating �ash
cards as you’re deconstructing the skill, you’re killing two birds
with one stone.

Once you’ve created your �ash cards, it only takes a few minutes
each day to review them. By systematizing the review process and
tracking recall, these systems can help you learn new ideas,
techniques, and processes in record time. If you review the decks
consistently, you’ll memorize necessary concepts and ideas
extremely quickly.

It’s important to note that skill acquisition is usually much more
involved than academic learning. If you’re primarily interested in
memorizing concepts, ideas, or vocabulary in order to pass an exam,
you don’t need much more than spaced repetition.4

The best use of this technique is in instances where fast recall of
information is essential. If you’re learning common vocabulary
words in order to acquire a new language, spaced repetition and
reinforcement is valuable. In instances where fast recall isn’t
crucial, you’re usually better o� skipping the �ash cards in favor of
maximizing practice and experimentation time.

8. Create sca�olds and checklists.

Many skills involve some sort of routine: setting up, preparing,
maintaining, putting away, et cetera. Creating a simple system is

the best way to ensure these important elements happen with as
little additional e�ort as possible.

Checklists are handy for remembering things that must be done
every time you practice. They’re a way to systematize the process,
which frees your attention to focus on more important matters.

Sca�olds are structures that ensure you approach the skill the
same way every time. Think of the basketball player who
establishes a pre–free throw routine. Wipe hands on pants, loosen
the shoulders, catch the ball from the ref, bounce three times, pause
for three seconds, and shoot. That’s a sca�old.
Creating sca�olds and checklists makes your practice more

e�cient. They also make your practice easier to visualize, which
helps you take advantage of mental rehearsal, which can help with
some forms of physical practice.

9. Make and test predictions.

Part of the skill acquisition process involves experimentation: trying
new things to see if they work.

The true test of useful learning is prediction. Based on what you
know, can you guess how a change or experiment will turn out
before you do it?

Getting into the habit of making and testing predictions will help
you acquire skills more rapidly. It’s a variation on the scienti�c
method, with four key elements:

Observations—what are you currently observing?
Knowns—what do you know about the topic already?
Hypotheses—what do you think will improve your performance?
Tests—what are you going to try next?

I recommend using a notebook or other reference tool to track
your experiments and form hypotheses as you practice. By keeping
track of your predictions and generating new ideas, you’ll have
more fruitful experiments to test.

10. Honor your biology.

Your brain and body are biological systems that have biological
needs: food, water, exercise, rest, and sleep. It’s very easy to push
yourself too hard, which is counterproductive. Without the proper
inputs, your body and mind won’t produce useful output.

According to Tony Schwartz, author of The Power of Full
Engagement (2004) and Be Excellent at Anything (2011), the optimal
learning cycle appears to be approximately ninety minutes of
focused concentration. Any more, and your mind and body will
naturally need a break. Use that opportunity to exercise, rest, have
a meal or snack, take a nap, or do something else.

This principle dovetails very nicely with practicing by the clock.
By setting your timer for sixty to ninety minutes before you start
practicing or researching, it will be easier to remember to take a
break when you’re done.

You can also split your practice into several smaller parts, with a
short break in the middle if needed: twenty minutes of practice, ten-
minute break, twenty minutes of practice, ten-minute break, et
cetera.

Stacking the Deck
There ain’t no rules around here. We’re trying to accomplish something.

—THOMAS EDISON, INVENTOR

You won’t need to use all of these principles for every skill you
acquire, but you’ll always �nd at least a few of them essential.

I �nd it’s useful to think of these principles as a secondary
checklist. Whenever you decide to acquire a new skill, just review
this checklist and decide which principles apply to your project.

Here’s the checklist for e�ective learning:

Research the skill and related topics.
Jump in over your head.
Identify mental models and mental hooks.

Imagine the opposite of what you want.
Talk to practitioners to set expectations.
Eliminate distractions in your environment.
Use spaced repetition and reinforcement for memorization.
Create sca�olds and checklists.
Make and test predictions.
Honor your biology.

That’s it: apply this checklist to your current prime skill and
you’ll learn what you need to know to practice e�ciently and
e�ectively.

Putting Theory into Practice
How vain it is to sit down to write when you have not stood up to live.

—HENRY DAVID THOREAU

Enough theory: it’s time for practice.
We’ve already covered the basics of rapid skill acquisition, but

knowing how to do these things isn’t nearly as important as actually
doing them. Remember: no practice, no skill acquisition.

Instead of going on and on about the theory of skill acquisition,
I’ll show you how to actually do it. I’m going to use these principles
to acquire several new skills, and you’ll have a front row seat.

Here are the skills I intend to acquire:

Yoga: developing a home asana practice.
Programming: creating a functioning web application.
Typing: relearning to touch-type with a nonstandard keyboard layout.
Strategy: playing Go, the world’s oldest and most complex board game.
Music: playing the ukulele.
Windsur�ng: sailing and maneuvering on �at water.

I have no experience with any of these skills. Using the techniques
and methods I just described, my goal is to acquire each of them in
thirty days or less. My estimated time of acquiring each of these
skills is approximately twenty hours, averaging sixty to ninety
minutes of practice each day.

About These Examples

These particular skills are completely idiosyncratic. They’re things
I’m interested in learning for various reasons, which I’ll explain
later in detail. The skills you want to acquire may be quite di�erent,
but the core skill acquisition process will be largely the same.

My hope is that in showing you how I’ve used this process to
acquire many di�erent skills in many di�erent areas, you’ll come
away with a more complete understanding of how to use these
techniques to get better at the skills that matter to you.

If you’re naturally more interested in one or two of these
examples over the others, that’s okay. Read those chapters �rst. If
you start reading a chapter and �nd the skill boring or not
applicable to your situation, feel free to skip it. I’m using the same
core method for all of these examples, so you won’t miss any
crucial parts of the approach.

I’m writing these chapters in tutorial format, under the
assumption you’ve never seen these skills before, so you don’t have
to have any experience or prior knowledge to follow along. In
addition to illustrating the method, I hope you’re also able to take
away some valuable knowledge about six interesting skills that are
worth practicing.

If you have a lot of experience in one of these subjects, it’s likely
you’ll notice an error in my understanding, a mistake in my
verbiage, or a disagreement with my method. That’s totally �ne.
Remember, I’m starting as a complete beginner, and I don’t know what
I’m doing. (Yet.)

What you’ll read is an overview of my learning process for each
of these skills. I’ve made every attempt to ensure the information in
this book is accurate and complete, but I’m bound to make
mistakes. In all cases, the method of research and deliberate practice
is what’s most important.

First up: yoga.

4

Yoga

Lesson: Don’t Make it Harder Than it Needs to Be

I do not measure my progress in Yoga by how far I can bend or twist, but by how I treat my
wife and children.

—T. K. V. DESIKACHAR, RENOWNED YOGA TEACHER

For supplementary images, video, and commentary about this chapter, visit
http://first20hours.com/yoga.

I’m getting old.
To clarify: relatively speaking, I’m still a young man, but I’m

beginning to notice a few things about my body that concern me.
When I wake up in the morning, I often have a dull ache in the

middle of my back. After a long day in front of the computer, my
neck and shoulders feel tight and sore. It’s not a pleasant sensation.

Up to this point, I haven’t thought much about my body. It just
worked. After leaving high school, and with it, organized sports, I
haven’t exercised at all. Once I started college, I began treating my
body as a vehicle whose only purpose was to transport my brain
from one class to the next.

Since graduation that hasn’t changed, and up to this point I’ve
felt okay. Now, those years of physical neglect are catching up with
me.

I’m crunchy, and I know it.

http://first20hours.com/yoga

“You Should Really Look into Yoga …”

Kelsey, my wife, has been doing yoga since college. Every day or
so, she’d walk down the street to the local studio and spend an hour
or more contorting herself into various positions in a very warm
room. She loved it, and always came home happy and relaxed.

Every week, Kelsey would tell me “You should really try yoga.
It’s great. You’d really like it.”

I hesitated. Yoga, to me, just wasn’t very appealing.
It wasn’t the stretching. I ran track in high school, so stretching

wasn’t a big deal. My favorite event was the 110-meter hurdles,
which required a signi�cant level of �exibility.1

Training for hurdles involved a lot of stretching, and I’ve
maintained a lot of the �exibility I developed during those years,
particularly in my hamstrings. Even now, over a decade later, I can
place my palms on the �oor without bending my knees.

My hesitation in practicing yoga was, to put it bluntly, how weird
it seemed.

Chakras, Auras, and Kundalinis, Oh My!

Sh!t Yogis Say,2 a video produced by lululemon,3 one of the most
pro�table athletic apparel retailers in the world, is a tongue-in-
cheek, over-the-top example of how yoga can sound to the
uninitiated. Here are a few highlights:

“I’m concerned about your aura …”
“How do you say that in Sanskrit?”
“My chakras are so aligned.”
“Want to see where I can put my leg?”

The video has been viewed over 2 million times since it was
released on YouTube in December 2011, so it clearly struck a chord.

I’m a pretty rational, down-to-earth guy. I’m prepared to believe
that stretching on a regular basis is good for you. Learning a

sequence of stretches seems perfectly reasonable.
All of this talk about auras, chakras, and esoteric spiritual

devotionals, however, is a huge turno�. I don’t know what any of
that has to do with exercise, and frankly, the hippie mysticism
makes yoga sound like some weird cult.

That’s not all. The practice of yoga in America has evolved into a
lifestyle at the center of an 8 billion dollar �tness and clothing
industry. Showing o� how yogic you are has become a trendy social
status signal, the obnoxious earth-child equivalent of carrying the
latest handbag from Louis Vuitton.

No thanks. My “chakras” are �ne, thank you very much.

“Relax Your Face”

Eventually, Kelsey convinced me to try yoga as a New Year’s
resolution. I was working from home, so she pitched it as a good
way to get out of the apartment and meet people. I was still
skeptical, but I decided to humor her.

We secured memberships at Pure Yoga, a brand new high-end
studio on New York’s Upper East Side. Many of the classes were
taught by Marco Rojas, Kelsey’s favorite teacher and one of the top-
rated instructors in the city.

Imagine a younger, leaner version of Antonio Banderas in yoga
pants, and you have Marco. He’s handsome, charismatic, and has a
killer voice with a Spanish accent. Marco’s classes are packed, both
because he’s a genuinely great teacher, and because 99 percent of
the yoginis in the city have a serious crush on him. (And who can
blame them?)

Since I was brand new to yoga, I tried my best to follow along as
Marco taught. I didn’t know the poses, or what each pose was
called, so I just watched what everyone else was doing and tried to
imitate. It took a lot of concentration. I could keep up, but it was a
struggle. Some poses, like headstands, were way beyond my ability.

I tried to stay toward the back of the room, so I could watch what
everyone else was doing, and also reduce collateral damage in case
I fell, which happened more often than I’d like to admit.

I enjoyed Marco’s classes, but I didn’t really grok what was going
on. Every now and again, Marco would stop by my mat and adjust
me, helping me do the pose correctly.

On one memorable occasion, Marco braced my feet with his own,
so they were perpendicular to the �oor. Then, he grabbed my hands
and pulled. Hard.
“Engage your quadriceps … pivot at the hips. Good. Now … relax

your face.”
I was grimacing, and for good reason: my wrists were touching

my toes. I relaxed my face.

The “Householder” Dilemma

As much as I enjoyed Marco’s courses, it was hard to make time for
them. Each class was an hour and a half, not including the time it
took to walk to the studio, change, shower afterward, and walk
home.

Even though the studio was only a few blocks away, it was still a
solid two-hour commitment. I was working from home at a
demanding job for a Fortune 500 company at the time, and I often
had meetings that overlapped with the scheduled class times. It
didn’t help that the classes were in the middle of the morning and
afternoon, which meant I’d have to skip out on work to attend.
Generally speaking, my work arrangements were �exible, so it was
mostly a psychological problem: it was hard to convince myself it
was acceptable to go twist my body into knots for two hours when
there was work to be done.

In the end, I attended maybe �fteen classes that year. Even
though I felt great after each class, I just couldn’t justify the time
commitment.

In addition, I wasn’t practicing at home. I didn’t know how.
During class, I was mimicking other students. I could roll a mat on
the �oor at home and stretch, but in my mind, that wasn’t really
yoga.

When the Student Is Ready, the Teacher Appears

After we moved to Colorado, Kelsey mentioned to me one evening
that she missed New York. She missed going to Marco’s classes, and
she missed Leslie Kamino�’s yoga anatomy course, which she took
after completing her yoga teacher certi�cation. Leslie is the
coauthor of Yoga Anatomy (�rst edition, 2007; second edition, 2011),
one of the bestselling yoga books of all time, and his material is
used in yoga teacher training programs all over the world.
Unfortunately, to take Leslie’s course, you had to live in New York
City, so Kelsey had to stop when we moved.
“Someone should really put Leslie’s course online,” she said.
Here’s the irony. A few weeks earlier, Kelsey had helped me

launch my �rst online course, so she knew how to do it. She was
also right about Leslie’s course: since it was only available for
students who lived in New York City, but students from all over the
world wanted to participate, it would make a lot of sense to publish
the course online.

I pointed out the obvious: Kelsey was fully capable of creating the
course if Leslie was willing to let her produce it. That night, she
sent Leslie a proposal.

Two days later, Kelsey and Leslie agreed to move forward, and
Kelsey founded her �rst business, an online yoga course production
company.

Since we were both working from home, I suddenly started
hearing a lot more about yoga. Part of the production process
involves watching raw footage from each class, then making
detailed notes for the video editor and transcriptionists. As a result,

I ended up listening to bits and pieces of Leslie’s course as Kelsey
was producing it.

The Moment I Decided to Get Serious About Yoga

One of the �rst things that piqued my interest was Leslie’s tone. He
didn’t sound anything like a woo-woo hippie, which is what I
expected. On the contrary, he has three decades of hands-on
experience in anatomy, physiology, and sports medicine, and has
very little tolerance for �u�y terminology.

From Leslie’s perspective, yoga is valuable primarily because it’s
useful. Yoga, as a practice, is very good at building strength,
increasing �exibility, and maintaining range of motion.

Yoga is even more e�ective when you focus on the breathing
aspect of the practice. Most people think of yoga practice as an odd
combination of aerobics, gymnastics, and contortion, but that’s not
an accurate picture. What makes yoga yoga is combining breathing,
movement, and a mindful mental state.

Leslie also explains some of the oddities in yogic terminology.
Early practitioners were experimenting with the body and mind.
They were trying to do science before modern disciplines like
anatomy, biology, and cognitive psychology were formalized.

As a result, when these early practitioners found something
interesting, their only option was to explain what they found in
terms of story or metaphor. For example, when yogic practitioners
discovered that speci�c poses and breathing techniques tended to
provoke certain emotional responses, they explained what they
noticed in the best way they could.

That’s the origin of concepts like chakras: scienti�cally, there are
no hidden pools of energy in your bowels, sacrum, solar plexus,
heart, throat, forehead, and crown. As metaphors, however, they
helped early practitioners talk about something they were

experiencing internally. The metaphors were useful enough that
they stuck around.

The last straw came in the form of a YouTube video Leslie
presented during one of his �rst online classes. In the video, Gil
Hedley,4 a human anatomy teacher, is leading an educational
autopsy of a human cadaver for a group of students.5 At one point
in the video, Gil highlights an interesting feature of muscular fascia,
the layers of �brous tissue that encase our muscles.

Just like ligaments and tendons, fascia is connective tissue: it
binds our bodies together. By encasing muscle groups, our fascia
helps us move by allowing our muscles to slide over each other
more easily.

There is, however, a drawback: when these layers of fascia are at
rest, “fuzzy” strands of connective tissue, which have roughly the
appearance and consistency of cotton candy, begin to grow between
the fascia.

Normally, that’s not a big deal. Individual strands are very thin,
so the sliding of muscles over each other breaks them easily. The
trouble comes when you don’t move enough.

If you don’t move your muscles for a certain period of time, the
“fuzz” stays there and gradually builds up over time. When the fuzz
gets thick enough, it can solidify, limiting your normal range of
motion.

I know I’m not moving enough, so this video got my attention. Is
the “crunchiness” I’ve been feeling my body’s way of telling me my
muscles are fuzzing over? (That’s creepy!)

That’s one potential explanation, but it’s not the only possibility.
According to Leslie, back and neck pain can also be caused by a lack
of oxygen �owing to the muscles in question, a situation called
ischemia. Lack of movement can cause a shortage of blood �ow to
the muscles. When a muscle runs short of oxygen, its pain receptors

begin to �re, creating that persistent, dull ache. The longer the
condition persists, the more pain you’ll experience.
Chronic stress and suppressed breathing patterns also contribute

to ischemia. These causes often go together: it’s common for people
to hold their breath when they are experiencing stress. If you help
your muscles get more oxygen by moving, breathing, and reducing
your general level of stress, the muscle aches go away.6

Regardless, frequent movement and oxygen intake are important
in relieving muscle pain and maintaining range of motion. Yoga
combines movement, breathing, and meditation, so it’s typically
very e�ective in reducing or eliminating chronic muscle pain.

That’s enough evidence for me. I’m going to learn how to do
yoga.

Now … how do I start?

What Is “Yoga,” Really?

If I’m going to do yoga, I’ll need to have some fundamental
understanding of what it is I’m doing. If yoga only consisted of
stretching, people would just call it “stretching.”

As it turns out, the key to identifying the essence of yoga is
understanding where it comes from and how it became what we call
“yoga” today.7

Yoga has existed in various forms for thousands of years. The
earliest recognizable evidence of yoga comes from artifacts
recovered from archeological sites related to the Indus Valley
civilization, which was located in present-day Pakistan and
northwest India from 3300 to 1300 BCE.

Yoga, as a philosophy and practice, was a set of nonreligious
techniques that were intertwined with the religious and
philosophical traditions of the region. Ancient Vedic priests
completed elaborate physical rituals to connect the physical world
to the divine in search of Brahma, the “ultimate ground of all

being.” The word “yoga” comes from the ancient Sanskrit word for
yoke. In the same sense that an ox is attached to a plow to work a
�eld, through their rituals, the priests were trying to tie the
spiritual world to the physical world.

Over time, Vedic tradition waned. Priests began to explore the
idea of atman, the essence of the human self. External physical ritual
turned to introspective meditation, and spiritual practitioners began
to renounce the material world and complex ritual in favor of
roaming the forests, practicing meditation, and taking vows of
poverty and asceticism in search of ultimate truth.

Yājñavalkya, a sage who lived in what’s now called the
Upanishadic period, proposed that the grasping human ego prevents
us from knowing our real selves. By destroying the ego, we can
become one with our atman, our “soul” or essential self.
Yājñavalkya also introduced the idea of karma, which he de�ned as
actions taken to achieve liberation from the ego. By separating the
body from the atman, it was possible to attain what the Buddha
would later call enlightenment.

Enter the Asanas

Yājñavalkya’s philosophical insight led to the development of what
most practitioners consider the core of contemporary yoga practice:
physical postures combined with controlled breathing and
meditation. As religious historical scholar Karen Armstrong explains
in The Great Transformation:8

Yoga is one of India’s greatest achievements and, in its most evolved form,
almost certainly was �rst designed [by practitioners] to release the purusha
[essential self] from the entanglement of nature.

This classical yoga was very di�erent from the version of yoga that is often
taught in the West today. It was not an aerobic exercise, and it did not help
people to feel better about their lives—quite the contrary. Yoga was a systematic
assault on the ego, an exacting regimen that over a long period of time taught
the aspirant to abolish his normal consciousness with its errors and delusions,
and replace it with the ecstatic discovery of his purusha.

Yoga was a full-time job. It wasn’t for the dabbler or the faint of
heart: it was a demanding, exacting spiritual discipline, the
exclusive domain of monks and gurus. Classical yogis didn’t practice
to get stronger or more �exible. They strove to sever the link
between their body and their atman. Heavy stu�.

The Codi�cation of Yoga

In the second century BCE, a scholar named Patañjali began
compiling and curating the yoga philosophies and practices of the
time. Patañjali’s summary of the best (raja, or “kingly”) practices
became The Yoga Sutras of Patañjali, a collection of aphorisms that
went on to become the foundational text of yoga practitioners.

In The Yoga Sutras, Patañjali outlined eight fundamental aspects,
or “limbs” of raja yoga practice:

Yama—morality
Niyama—self-puri�cation
Asana—posture
Pranayama—breath control
Pratyahara—sense control
Dharana—intention
Dhyana—meditation
Samadhi—absorption/contemplation

Patañjali called this system “ashtanga,” or “eight-limbed” yoga.
By diligently practicing all eight limbs of yoga, the practitioner
would experience kaivalya: a perfect detachment of the
practitioner’s soul from the material world, leading to eternal
happiness.

What most people think of when they hear the word “yoga”—
bending yourself into strange postures—is only one limb, asana.
Asana is typically practiced with speci�c breathing techniques called
pranayama. The intent of practice is to prepare for meditation
(dhyana).

Patañjali’s system focused on yoga as a philosophy, not as a
system of exercise. Asana was mostly limited to static seated poses
—a far cry from the gymnastic contortions modern practitioners are
familiar with.

That’s not to say intense poses didn’t exist. Hatha (forceful) yoga
poses had been around since Yājñavalkya, but athleticism wasn’t the
primary concern.

The most famous compilation of hatha yoga practices is the Hatha
Yoga Pradipika by Maharishi Swatmarama, a �fteenth-century sage.
Swatmarama considered hatha yoga the ideal way to attain
Patañjali’s raja yoga. By purifying the body through exercise,
practicing pranayama, and ritually inhaling smoke while doing a
headstand, Swatmarama believed hatha practitioners could achieve
higher states of consciousness.

Early forms of hatha yoga never really caught on. Intense
physical posture practice remained an obscure o�shoot of raja yoga
until a Brahman from Mysore, India, revolutionized the practice
four centuries later.

The Man Who “Invented” Modern Yoga

Tirumalai Krishnamacharya was born in 1888, the eldest son of Sri
Tatacharya, a well-known Brahman priest.9 Krishnamacharya was
introduced to hatha practice by his father at the age of �ve, and
continued strict hatha practice throughout his formal education. In
1919, he arranged to travel to Mount Kailash in Tibet to study under
one of the last remaining masters of hatha yoga, Sri Ramamohana
Brahmachari.

Krishnamacharya studied under Brahmachari for seven and a half
years, memorizing the Yoga Sutras of Patañjali and practicing asana.
He also, as the story goes, picked up a few attention-grabbing feats
of skill, like slowing his respiration and stopping his pulse for
extended periods of time. Krishnamacharya would later use these

skills to great e�ect, demonstrating them in public as a way of
popularizing hatha practice.

The Guru’s Request

The guru/student relationship has a long and established history in
India. At the end of a student’s tenure with his or her guru, it’s
customary for the student to o�er a payment to the guru, a practice
called guru dakshina, as a gesture of thanks and deep respect for the
guru’s teaching. Often, the payment consisted of money or material
goods, but sometimes the guru requested completion of a special
task. When Krishnamacharya’s studies were complete,
Brahmachari’s request was simple: Krishnamacharya was to marry,
have children, and teach the yoga he had learned at Mount Kailash.

Brahmachari’s request was shocking. Krishnamacharya had already
been appointed to several high-status religious and educational
positions, under the expectation he’d eventually assume his great-
grandfather’s position as the primary religious leader of South
India. To get a sense of the status shock, imagine being appointed as
the CEO of a prestigious company, only to be told you’re duty-
bound to work as a janitor instead. Brahmachari’s dakshina was a
permanent sentence of hardship and low status.

Krishnamacharya honored his guru’s request and returned to
Mysore, living in abject poverty and looking for opportunities to
teach hatha yoga.

In 1931, Krishnamacharya was invited to teach hatha at the
Sanskrit College in Mysore. There, he was introduced to Krishna
Raja Wadiyar IV, the ruling maharaja of Mysore. Impressed with
Krishnamacharya’s abilities and scholarship, and thankful for
Krishnamacharya’s help in managing his diabetes, the maharaja
invited Krishnamacharya to open a yoga school in the palace under
his patronage.

Since most of the students at the yoga shala in Mysore were
energetic young boys, Krishnamacharya developed a new form of
hatha yoga practice that emphasized building strength and
increasing �exibility. He combined traditional hatha asanas and
pranayama with movements from British gymnastics, adapting and
modifying the sequence for each individual student.10

A New Yoga

That was the genesis of what is known today as ashtanga vinyasa
yoga. If you go to a yoga class in a gym or pick up any book that
contains the words ashtanga, vinyasa, “Power,” “Flow,” “Core,”
viniyoga, or Iyengar, you’re practicing in the tradition of
Krishnamacharya.

Krishnamacharya adapted his teaching to the needs of his
students. Ashtanga yoga was popularized by one of
Krishnamacharya’s �rst devotees, K. Pattabhi Jois, who studied
with him in Mysore. Ashtanga primarily focuses on six vigorous
sequences of poses, starting with the “Primary Series,” which
Krishnamacharya taught at the yoga shala. Present-day ashtanga
practice retains this emphasis on sequence and athleticism.

When instructing his brother-in-law, B. K. S. Iyengar,
Krishnamacharya emphasized the alignment of the body in asana,
given Iyengar’s fragile health at the time. Iyengar went on to
develop this approach into the alignment-oriented style of yoga
practiced today.

Later in life, when Krishnamacharya was spending most of his
time working as a healer, he taught his son, T. K. V. Desikachar, the
therapeutic aspects of asana practice. Today, Desikachar’s students
emphasize yoga as a tool for wellness, and are exploring a wide
range of potential health applications, from physical therapy to
anxiety relief. As a result, pretty much every major form of modern
yoga has been heavily in�uenced by Krishnamacharya’s teachings.

What didn’t change was the emphasis on normal people with
everyday responsibilities. Krishnamacharya’s yoga was not for the
monk or ascetic: his focus on personalized practice for everyday
people made asana accessible for millions of busy people around the
world. In the words of T. K. V. Desikachar: “You do yoga so you
can live your life, not the other way around.”

Yoga = Breathing + Movement + Meditation

Back to the present. What does any of this history have to do with
modern yoga?

Here’s what surprised me: modern asana practice, historically
speaking, is a recent invention. Sure, the philosophical bits of yoga
have been around for a few thousand years, but the actual practice
of spending time assuming postures while breathing and meditating
is, historically speaking, practically brand new.

The emphasis on strength and �exibility in yoga practice is also
new. Very few of us are actively trying to forcibly dissociate our
soul from our body in search of our atman. Most modern yoga
practitioners aren’t ascetics or renunciates. In general, present-day
yoga practitioners are primarily concerned with staying �t,
improving �exibility, and shedding some stress.

At the core, it’s clear that modern yoga practice consists of
combining movement, breathing, and meditation. The poses
themselves aren’t magical. They’ve changed a lot over the
centuries, and Krishnamacharya wasn’t shy about adding new
elements or modifying the practice to �t the student.

It’s also clear that yoga isn’t about �ashy moves. There’s a
philosophical bent to the practice: a recognition that you’re
spending time in this way in the service of becoming a better
person. Even though modern asana is relatively new, yoga
philosophy has been around for thousands of years, and it’s

interesting in its own right. Yoga is deep in ways that the latest
�tness fads aren’t.

There’s also no need to go out of your way to practice crazy
poses. Being a “real” yogi doesn’t mean being able to assume
Gumby-like positions: it’s practicing in a way that helps you live a
better life. Can’t do a pose because you’re not �exible enough,
strong enough, or have an injury? No problem: adjust the pose, or
do a di�erent one. As long as you’re focusing on your breath as you
move, and you pay attention to what your body is telling you,
you’re doing it right.

At the core, modern yoga practice is about integrating breathing,
movement, and mindfulness meditation. It’s not about gymnastics,
acrobatics, or becoming super �exible. Being super �exible or
acrobatic does not make you a better yogi.

Clearing up Misconceptions

Here are a few more common misconceptions about yoga:

You don’t need to know thousands of poses to do yoga. Knowing lots of poses does
not make you a better yogi. Krishnamacharya himself started with twenty-four.
You don’t need to know the Sanskrit names of the poses, or even the English names
of the poses. Knowing a lot of poses or their names does not make you a better yogi.
Some yoga practitioners adhere to religions like Hinduism, but religious belief is
not necessary to bene�t from asana practice.
Some yoga practitioners adopt diets like vegetarianism, veganism, or practice
Ayurveda, but a special diet isn’t a prerequisite for asana practice.
Some yoga practitioners are also interested in alternative medicine, astrology, and
other similar topics, but these interests are not prerequisites for asana practice.

All of these things are misconceptions I had when I �rst heard
about yoga. A little time spent learning what yoga practice actually
is was enough to alleviate my initial concerns, as well as prevent me
from wasting time on things that aren’t important.

Is Yoga Dangerous?

There’s one last thing I’m concerned about: Can I hurt myself doing
yoga?

Around the time I was researching asana, an in�ammatory article
about yoga practice was published in the New York Times. The
article, titled “How Yoga Can Wreck Your Body,”11 was written by
the Times’ sta� science journalist, William J. Broad. The essay was
essentially an excerpt from Broad’s book, The Science of Yoga: The
Risks and the Rewards (2012), which was slated for release a few
weeks after the article was published.

The article prompted a lot of hand-wringing in the yoga world.
Broad cited quite a few scienti�c studies about the bene�ts of asana
practice, mostly related to range of motion and emotional balance.
He then went on the attack, suggesting yoga practice is responsible
for a wide range of serious injuries, from sprains to strokes. In a
few cases, Broad suggested yoga was responsible for practitioners
lapsing into a coma.

This topic is an example of a useful inversion. What does it look
like to do yoga incorrectly, and what are the most signi�cant risks
of asana practice?

The yoga teaching community’s response to Broad’s article and
book was swift and �erce: Given the evidence, Broad
sensationalized. Yoga, like any physical activity, has risks, but those
risks aren’t likely to seriously harm you if you practice in a safe
way.

While it is indeed possible to injure yourself doing yoga, major
health issues like strokes and comas are extremely rare, and there’s
no evidence that suggests asana practice increases the risk of major
injury. Compared to other physical activities, even noncontact
sports like golf, yoga is statistically very safe.

As for muscle sprains, strains, and tears, those types of injuries
are certainly possible if you force your body into poses, ignoring
pain and discomfort. If you believe that “real” yogis should be able
to touch their noses to their knees, and you force your body into

that position, you run the risk of spraining ligaments or tearing
your hamstrings. Likewise, if a yoga teacher forcefully adjusts you
in a way that exceeds your body’s limits, you’re likely to sustain an
injury.

One signi�cant potential area for injury is the cervical spine.
Some poses, like headstands, put pressure on the head and neck, and
if you fall in the wrong way while doing them, it’s possible to
seriously injure your neck or spine.

Based on this information, as long as I listen to my body, don’t
force myself into poses, and avoid unnecessary weight on my
cervical spine, I can reap the bene�ts of practice without signi�cant
risk of injury. That’s great to know.

Minimum Viable Asana

I’m all set to start practicing … so where do I begin?
It’s clear that there are many types, forms, and philosophies of

what yoga “should” look like. That’s all well and good, but I need
to take a step back and decide what the purpose of yoga is for me.

Why am I doing this?
I want to be more physically active, and my body is making it

clear that I need to move more. My doctor has recommended range-
of-motion exercise, and mentioned yoga as an option. I’ve read
about the bene�ts of both exercise and meditation, and I like that
yoga combines both. I don’t have time to go to a studio for long
classes, so I’d like to be able to practice at home in a way that’s
e�ective and safe.

That’s enough detail for a useful target performance level. Here’s
mine:

1. Learn a sequence of physical postures I can practice to increase my daily level of
physical exertion, strength, and general �exibility.

2. Combine exercise with breathing and meditation, reaping several major physical
and mental bene�ts in a single period of time.

3. Practice safely from memory for twenty to thirty minutes, adjusting for duration,
strength, �exibility, and general level of energy.

Yoga Equipment

Before I start practicing, I’ll need some basic equipment. First and
foremost is a mat, which provides some cushioning and prevents
hands and feet from slipping out of position. Yoga practice can be
sweaty, and if you slip, it can lead to an injury, so getting a good
mat is important.

When I practiced at Pure Yoga, they supplied the mats, which was
nice. I noticed, however, that the mats were a bit too short for me.
I’d often �nd myself slipping o� the edge, and I’d have to stop and
adjust. It’s probably best if I can �nd a longer mat.

After a bit of research, I settled on an eighty-�ve inch Manduka
PRO mat.12 It’s extra long, super grippy, very durable, and happens
to be a nice green color. Works for me.

In addition, I picked up a mat bag and a few hand towels, just in
case my hands get sweaty. I already have shorts and T-shirts, as
well as a few pairs of yoga pants, so I’m set in terms of clothing.
Asana is practiced barefoot, so I don’t need special shoes.

At Kelsey’s suggestion, I purchased a long cotton strap and a
bamboo block, which she says can help when modifying certain
poses.

That’s all the equipment I need, which is nice. You don’t need a
lot of stu� to do yoga.

Learning the Poses

Here’s my initial strategy: Kelsey is a trained yoga teacher, so it
makes sense to start with her instruction. We set aside ninety
minutes one afternoon to cover the basics.

If I didn’t have a yoga teacher in the family, I’d book a private
tutorial with a local instructor. One-on-one coaching for this type of

learning is very helpful, since movement is di�cult to learn from a
book.

That doesn’t mean I’m skipping the books. I’ve already picked up
a few resources:

Yoga Anatomy by Leslie Kamino� and Amy Matthews (2011)
Yoga for Wellness by Gary Kraftsow (1999)
Ashtanga Yoga: Practice and Philosophy by Gregor Maehle (2007)
Breath-Centered Yoga with Leslie Kamino� (DVD) by Leslie Kamino� (2010)

I’m using these resources primarily as references. They contain
photographs and illustrations of poses, as well as detailed
instructions on how to do each pose properly, so I’ll look up
information as necessary. I’ll know more about what I need to learn
after I start practicing.

Kelsey and I roll out our mats and begin. First up: Sun
Salutations.

The Sun Salutation Sequence

Sun Salutations are a sequence of postures designed to help you
warm up your body, so most asana practices begin with a few
rounds.

A quick note if you decide to try these yourself: Everyone is different, and the
“right” way to do each pose depends on your body’s unique limits. If you pay
attention to what your body is telling you, avoid overextending, and adjust each
pose to your personal limits, you’ll be able to practice asana safely.

Here’s how it goes:

1. Inhale. Stand straight at the front of the mat, arms relaxed at your sides, knees soft.
2. Exhale. Bring your hands up into the universal “prayer” position in front of your

chest.
3. Inhale while bringing your arms up and out to the side until they are fully

extended above your head. Then, look up at your hands. (If that feels
uncomfortable, just look straight ahead.)

4. Exhale and fold forward, hinging at your hips to bring your hands down to the
�oor to touch your toes. Go as far as you can without overextending; it’s okay to
bend your knees. Relax your shoulders and neck.

5. Inhale and look at the wall in front of you while your hands maintain contact with
the �oor. (Alternatively, try to straighten your legs while keeping your head and
neck relaxed.)

6. Exhale as you return to the forward bend.
7. Inhale as you step your feet back to “push-up position,” so your body is fully

extended with your arms and the bottom of your toes supporting your weight. You
can either walk your feet back or jump, as you prefer. (This pose is called Plank.)

8. Exhale and lower yourself toward the ground, as if you’re doing a push-up. Don’t
rest on the ground; stop an inch or two from the mat and pause. Be sure to keep
ninety-degree angles in your shoulders, elbows, and wrists to prevent injury. If this
is too strenuous at �rst, it’s okay to bring your knees to the �oor. (This pose is
called Chaturanga Dandasana, usually shortened to Chaturanga.)

9. Inhale as you push forward, arching your back while you push up until your torso
is upright. At the same time, “roll” your feet so that the top of each foot is touching
the ground, and your legs are an inch or so o� the mat. (This pose is called
Upward-Facing Dog, since it resembles a dog stretching.)

10. Exhale and roll your feet back, so the bottoms are touching the mat. At the same
time, move your tailbone up and back until your body is in an inverted V shape.
Relax your neck and shoulders. If you feel a stretching sensation in your
hamstrings, it can help to imagine yourself “breathing” into them. Stay in this
position for three to �ve breaths. (This pose is often called Downward-Facing Dog.)

11. Inhale, then exhale as you walk or jump your feet forward, until your feet are
beneath your shoulders.

12. Repeat steps 5 and 6.
13. Inhale while bringing your arms up and out to the side until they are fully

extended above your head, as in step 3.
14. Bring your arms down in front of you until your hands are in the universal

“prayer” position in front of your chest, as in step 2.

You’ll notice the sequence ends in the same position as it begins.
Once you’ve completed the sequence, you can repeat it as many
times as you like, or easily move into a di�erent standing pose.

Also, notice how each step begins with “inhale” or “exhale”?
That’s intentional: each movement corresponds with a breath.
Focusing on the breath is what makes yoga di�erent from aerobics.

You can think of the Sun Salutation sequence as “minimum viable
asana”: if you really wanted to, your entire practice could consist of
doing Sun Salutations over and over again. The sequence hits all of
the body’s major muscle groups, requires a good mix of strength
and �exibility, and is challenging without being complicated.
Krishnamacharya really knew what he was doing.

In traditional ashtanga practice, a Sun Salutation (also called a
vinyasa) is done in between every individual pose. That means you
spend the majority of the two-hour Primary Series doing this simple
sequence. It’s a good example of the power law in action: a
minority of poses makes up the majority of the practice.

Still, the human body is prone to repetitive stress injury: if you
overdo Sun Salutations, it’s possible to hurt yourself.13 That’s why
it’s a good idea to do a few sets of Sun Salutations to warm up, then
move on to di�erent poses.

Remember to Breathe Like Darth Vader

While practicing asana, it’s common to use a special breathing
technique called ujjayi. This is the simplest of the breathing
techniques (pranayama) used in yoga practice, and it’s designed to
make it easier to focus on the breath.

In the back of your throat there’s a small �eshy structure called
the glottis, in roughly the same area as your tonsils and vocal
chords. If you focus on that area for a moment, you can consciously
contract the glottis very slightly, which constricts the air �owing
into and out of your lungs.

The e�ect of this constriction is noticeable: you can hear (and
feel) cold air rushing into your lungs when you inhale, and warm air
�owing out when you exhale.

The Yoga Sutras describe the sound of ujjayi as “like the ocean,”
but I prefer a modern analogy: ujjayi sounds like Darth Vader from
Star Wars. If you imitate the Dark Lord of the Sith’s infamous
respiration pattern, then close your mouth, you’ll be doing ujjayi.

Ancient yoga texts ascribe mystical qualities to ujjayi, as well as
other pranayama techniques. Regardless of whether or not ujjayi
“builds heat in the body” or “encourages the �ow of prana [the
universal life force],” it certainly makes it easier to pay attention to
your breathing.

The primary purpose of ujjayi is to help keep your breathing
calm, relaxed, and regular. By maintaining ujjayi as you practice,
it’s much easier to keep your mind focused on your breathing,
which keeps your attention from wandering. If you follow your
breath to the exclusion of everything else, you’re meditating
without really trying.

I’ve learned the most frequently used sequence in asana, as well
as the primary breathing pattern, in about twenty minutes. So far,
so good!

Now, let’s learn some common standing poses.

Standing Poses

Warrior 1

Warrior poses are a staple of ashtanga and vinyasa classes. The
poses often appear after (or in the middle of) a Sun Salutation
sequence, and can be done as a small sequence in themselves.

Here’s how the �rst Warrior posture works: stand facing forward.
Inhale and take a step back with one leg, letting the toes of your
back foot point approximately forty-�ve degrees to the side. Raise
your arms above your head, parallel to each other. The front leg
should be bent at the knee, foot �at, with the front shin
approximately perpendicular to the �oor. The back foot should be
�at on the ground. Hold the pose for three to �ve breaths.

Warrior 2

From Warrior 1, open your arms and hips to face the side of your
mat. (If your right foot is back, open to the right, and vice versa.)
Keep your arms parallel to the ground, “broadening” through the
chest. Hold the pose for three to �ve breaths.

Warrior 3

Warrior 3 could easily be called the Superman pose. The goal this
time is to move your torso forward while balancing on one foot,
with the rest of your body parallel to the �oor.

From a neutral standing position (regular standing or Warrior 1),
raise your arms above your head, then lift one foot slightly o� the
�oor. Move that foot backward in space while leaning forward with
your torso, hinging at the hip until you’re in Superman position.
Focus on balancing with the muscles in your foot, and keep your
bottom knee solid, but not locked.

Hold the pose for three to �ve breaths, then return to a neutral
standing position.

The Kamino� Spiral

From a neutral standing position, inhale and let your arms spiral out
and up, just like at the beginning of a Sun Salutation. From there,
exhale and let your arms spiral back in and down, while hinging
forward at the hips until your chest is close to your knees. Repeat a
few times, inhaling as you spiral up, and exhaling as you fold down.

This is my favorite standing pose: it feels so good after getting out
of bed, or after a few hours at the computer. The bene�t of this
variation is that it doesn’t put any weight on the hands or arms,
which is good if you su�er from carpal tunnel syndrome, are

recovering from injuries, or need to build strength and �exibility
before trying more challenging poses.

Forward Bend

From a neutral standing position, hinge at the hips and fold
forward, letting your knees bend if you need to. Relax your neck
and shoulders, and let your head hang down as you try to touch the
�oor with your �ngers. Play with bending and straightening your
knees, and notice where you begin to feel a stretching sensation. (If
your hamstrings are very �exible, you may be able to touch the
�oor with your palms, but don’t overextend yourself.) After three to
�ve breaths, return to standing.

Wide Forward Bend

From a neutral standing position, move your legs apart to each side,
creating a nice wide V-shaped stance. Then, hinge at the hips and
fold forward. Relax your neck and shoulders and let your head hang
down as you try to touch the �oor with your palms. After three to
�ve breaths, return to standing.

Triangle

From a neutral standing position, move your legs apart to each side,
creating a wide V-shaped stance, feet pointing forward. Then, rotate
at the hip so one of your feet points to the side of the mat. Bend
that knee and let your elbow come to rest on it. Reach your free
hand up toward the ceiling. Finally, straighten your bent knee, and
let your bottom hand fall to your leg or the �oor. Hold the pose for
three to �ve breaths, return to a wide stance, then repeat on the
other side.

Extended Side Angle

From a neutral standing position, move your legs apart to each side,
creating a wide V-shaped stance, feet pointing forward. Then, rotate
at the hip so one of your feet points to the side of the mat. Bend
that knee and let your elbow come to rest on it. Reach your free
hand up toward the ceiling, then (if it’s comfortable), bring your
bottom palm to the �oor. Your arms should be perpendicular to the
�oor, forming a straight line.

There’s a variation of Extended Side Angle that I really like: you
can bring your hands together in the universal “prayer” position

instead of extending your arms to the �oor and ceiling. After
holding the pose for three to �ve breaths, come back to the wide
forward stance, then repeat on the other side.

Chair

Stand straight, legs together and arms at your side. Inhale and raise
your arms straight above your head. Then exhale and bend your
knees, keeping your legs together, until you’re in roughly a seated
position, like you’re sitting in an imaginary chair. (This is di�cult,
and gets more di�cult the longer you hold the pose.)

Hold the pose for three to �ve breaths, then straighten to
standing.

Tree

Stand straight, legs together and arms at your sides. Lift one foot o�
the ground, bend at the knee, and grab your ankle with the
corresponding hand. Balancing on the other foot, guide the free foot
to the inside of your upper thigh, pointing your knee to the side.

You’ll probably notice the muscles in your grounded foot activating
like crazy until you �nd your balance.

Once your leg is in position, let go of your ankle and put your
palms together in front of your chest in the universal “prayer”
position. Hold the pose for three to �ve breaths, then repeat with
the other foot.

Floor Poses

Cat/Cow

Get down on your hands and knees, arms shoulder width apart, and
legs hip width apart. Keep your neck and shoulders relaxed, and
look down at the ground.

Exhale as you arch your back, pulling your belly toward your
spine. You’ll �nd yourself looking back toward your legs. This is
the Cat position.

Next, inhale as you �atten your back and return to neutral, then
arch in the opposite direction, pulling your belly toward the �oor,
as you did at the beginning of the Sun Salutation. You’ll �nd
yourself looking forward, and your back will be concave. This is the
Cow position.

Breathe and move back and forth between these positions at least
�ve times.

Seated Forward Bend

Sit on the mat, legs extended straight in front of you. Keep your
feet �exed, perpendicular to the �oor. Without bending your legs,
pivot from your hips as you engage your quadriceps (the muscles on
the front of your thighs), then reach forward with your hands
toward your feet. Reach as far as you can without pain or major
discomfort. Hold the pose for three to �ve breaths.

One-Legged Forward Bend

Think of this pose as a combination of Tree and Forward Bend.
Bring one foot up, bend at the knee, then rotate your leg to the
side. Place your foot on the inside of your thigh, then hinge forward
at the hip, just like in Forward Bend. Reach as far as you can
without pain or major discomfort, then hold the pose for three to
�ve breaths.

Sta�

This pose is harder than it looks. Sit on the mat, legs extended
straight in front of you. Keep your feet �exed, perpendicular to the
�oor. Place your hands �at on the �oor, then push your hands into
the �oor, lifting your body o� the �oor slightly as you try to keep
your feet pointing straight up. Hold the pose for three to �ve
breaths.

Bound Angle

Sit on the �oor, and bring your knees up against your chest. Then,
let your knees open to the side until they’re close to the �oor, and
the soles of your feet are touching. Hold your feet with your hands,
and maintain this position for three to �ve breaths.

Seated Spinal Twist

Sit on the mat, legs extended straight in front of you. Bring one
knee up to your chest, until your foot is close to your opposite knee.
Then, pick up your foot with your hands and place it on the other
side of your extended leg. Place your hands palms-down on the
ground by your hips, just like in Sta� pose.

Once you’re in position, move the opposite arm across your body
until your elbow is touching the outside of your knee. (If your right

leg is bent, you’ll be moving your left arm.) Bend the arm at the
elbow, and keep your �ngers pointing to the ceiling. Continue the
twist by pushing your arm gently against your leg. Complete the
twist all the way up your spine by rotating your head in the same
direction as you’re twisting.

The neat thing about this position is that you can really notice the
di�erences in rotation in the various parts of your spine. According
to Leslie Kamino�, the lumbar spine has only �ve degrees of
rotation. The thoracic spine has thirty-�ve degrees, and the cervical
spine has eighty to ninety degrees, so when you’re fully rotated,
you should be able to look behind you.

Hold the twist for three to �ve breaths, release, then repeat on
the opposite side.

Boat

This is a hard one. Sit on the mat, legs extended straight out in front
of you. Bend your knees so you’re balancing on your seat, and your
toes lightly touch the �oor. Extend your arms straight in front of
you, then keep your legs together as you lift them o� the �oor.
Keep your shins together and back straight, and adjust as necessary
to keep your balance. Hold for three to �ve breaths, then release.

Crow

Squat on the mat, with your palms �at on the �oor. Position your
elbows on the inside of each corresponding knee, then lean forward
until your center of gravity shifts forward, and your feet leave the
ground. Balance on your arms as long as you can, keeping your
breathing steady.

Wheel

Lay on the mat on your back. Bring your knees up until your feet
are �at, just below your hips. At the same time, place your hands
palms-down on the ground by your ears. As you inhale, pull
strongly with your legs and push strongly with your hands so that
your body arches o� the mat. Hold the pose for three to �ve
breaths, then release, bringing your torso down slowly to rest on
the �oor.

Adjusting the Di�culty

Notice how these poses usually end by being held for three to �ve
breaths? That’s intentional. Breathing is what makes yoga unique,
so it’s an important part of every pose. Three to �ve ujjayi breaths
is a good start as a beginner.

Advanced asana practitioners don’t necessarily do more
complicated poses, or a larger quantity of poses: they do the poses
more slowly, with more control, and hold each pose longer. As I get
better with practice, I’ll hold each pose for a few more breaths.

Shavasana

Shavasana is, in yogic tradition, the ultimate purpose of all of this
bending and breathing. Remember, the early purpose of asana was
to prepare for meditation. That tradition has continued into modern
practice, and for good reason: it’s quite nice.

Shavasana is a complete release of all muscular tension combined
with deep meditation. It’s often referred to as the Corpse pose, but
don’t let that morbid label put you o�. The pose itself is simple: lay
�at on the mat, legs extended straight, arms at your sides. Close
your eyes and release all tension from your body. Your muscles
shouldn’t be working at all.

Scan your body from head to toe, and wherever you notice any
muscles contracting, release them. This includes muscle groups
we’re not used to paying attention to, like your neck and even your
tongue. At this point, you also stop maintaining ujjayi, and start
breathing normally.

The sensation feels like you’re melting into the �oor. After so
much time keeping your muscles in constant motion, shavasana is a
relief. Exhausting your body seems to allow you to relax your mind,
so it’s easier to meditate when you reach shavasana.

Stay in shavasana for �ve minutes or so, then get up. Your asana
practice is complete.

Reviewing the Method

At this point, I’ve accomplished my target performance threshold.
After a total of three hours of instruction, I’m capable of practicing
asana at home in a safe, e�ective manner.

Let’s review the core of the method I used to learn yoga:

I acquired the necessary equipment: a mat, strap, and block.

I spent a few hours with an experienced instructor to learn the basics and correct
major misconceptions.
I learned that yoga asana practice involves moving through poses while focusing
on the breath and maintaining a mindful mental state.
I learned a basic vinyasa sequence of poses (the Sun Salutation), ten common
standing poses, and ten common seated/reclining poses.
I learned basic breathing techniques (pranayama) that make it easier to stay
focused on the breath while practicing.
I learned to prevent injury by paying attention to my body, modifying poses as
necessary, avoiding overextension, and avoiding unnecessary weight on the
cervical spine.
I practiced until I was able to complete the sequence from memory, which takes
around twenty-�ve minutes.

Where I’m Going from Here

At the moment, I’m happy with my asana practice. After three
hours of research and instruction, I’m able to practice yoga
whenever I want or need to, and I don’t have to rely on going to a
structured class at a studio. Twenty-�ve minutes in the morning or
evening, and I’m set.

I like that yoga combines exercise with meditation. After I
practice, it’s apparent how much better my body feels, as well as
how I feel emotionally. Continuing to practice will ensure I reap the
bene�ts of both meditation and range-of-motion exercise.

That’s the trick: I need to practice on a regular basis to reap the
rewards. Setting aside time in the morning and evening to practice
is key. Instead of starting the day by hopping online to check my e-
mail or getting right to work, I’m changing my schedule so I can
practice before I do anything else.

Taking care of my body needs to become my �rst priority, not
my last. Yoga will help keep me in good condition for decades to
come.

I don’t have to become a monk or a contortionist to enjoy the
bene�ts of yoga. I don’t have to know every pose, or be able to
stick my leg behind my head. I just need to practice the basics,
which weren’t at all di�cult to learn.

Even better: I learned what I wanted to learn in only three hours,
which is way better than I anticipated. I started this project
expecting to study a long series of complicated postures but, as it
turns out, that wasn’t necessary at all. I could achieve what I
wanted to achieve by simplifying, which allowed me to get the
results I wanted in less time.

When it comes to learning something new, there’s no sense in
making it more di�cult than it really needs to be.

5

Programming

Lesson: Complex Things Are Simple When You Break Them Down

If debugging is the process of removing software bugs, then programming must be the
process of putting them in.

—EDSGER DIJKSTRA, RENOWNED COMPUTER SCIENTIST

For supplementary images, video, and commentary about this chapter, visit
http://first20hours.com/programming.

I’ve been making my living on the web since 2007, when I quit my
full-time job as a marketing manager at Procter & Gamble in favor
of starting my own publishing and consulting company.

My primary website, PersonalMBA.com, is my livelihood: I’m
e�ectively a business professor, but I don’t work at a university.
Each year, I update my list of the best business books available for
readers who want to teach themselves business fundamentals.1

The Personal MBA recommended reading list has been a perennial
reader favorite since the �rst edition was published in 2005, and
updates to the list are met with tidal waves of visitors from around
the world. Since 2005, PersonalMBA.com has been visited by over 2
million readers.

My �rst book, The Personal MBA: Master the Art of Business (2010),
was a natural extension of PersonalMBA.com, and went on to
become an international bestseller. Part of the process of writing a

http://first20hours.com/programming
http://personalmba.com/
http://personalmba.com/
http://personalmba.com/

book is �guring out how to spread the word, so over the years I’ve
worked hard to attract new readers.

As a result, The Personal MBA has been featured in the New York
Times, Wall Street Journal, Fortune, Forbes, and FastCompany, and on
many popular websites and blogs. Each time my book or website is
featured, thousands of readers visit PersonalMBA.com in a very
short period of time.

The Price of Progress

Having thousands of simultaneous visitors to your website is a great
thing, provided those visitors can actually reach the site. That was
my problem: whenever my website received any signi�cant amount
of tra�c, it would go down in a blaze of glory, leaving visitors with
only a cryptic error message.

Here’s a typical example: Lifehacker.com, a popular productivity
blog, has featured The Personal MBA three times in the past seven
years. Each time, thousands of people would try to visit
PersonalMBA.com at the same time, overwhelming my web server
(the computer that delivers a web page when it’s requested by a
visitor). Instead of delivering the requested information, my server
would return an “Error establishing database connection” or “Error
503” message, the digital equivalent of the server pleading for
mercy.

Each time my server crashed under the heavy load, a little piece
of my soul died with it. All of the time spent marketing my website
was wasted. Thousands of curious readers were �nally interested in
learning what I had to o�er, but with my server down, they were
all walking away disappointed and empty-handed. My marketing
was working too well, and my systems couldn’t cope with the
sudden demand.

Examining the Problem

http://personalmba.com/
http://lifehacker.com/
http://personalmba.com/

At �rst, my approach was to beef up the server by adding more
processing power and more memory. That helped, but only to a
point. Beyond that point, my site would crash and burn, which
happened to coincide with pretty much every major marketing
victory.

At the time, PersonalMBA.com was running on a popular website
management system called WordPress.2 WordPress is optimized for
easy installation and use, not performance under heavy loads. Under
the default WordPress con�guration, every web page request kicks
o� a cascade of server activity, generating hundreds of hidden
requests in order to deliver each web page to the reader.

That makes each individual web page request “expensive.” That
is, each request requires a signi�cant amount of memory and
processing power to complete. If a single visitor views �ve pages on
the website, that user generates �ve expensive requests. If a
thousand visitors request the exact same page at the exact same
time, the server will attempt to kick o� a thousand identical
expensive processes all at once.

The System Is Down

In this situation, the poor beleaguered server will attempt to return
every request, but since each request demands a lot of resources, the
server will run out of memory before every request is ful�lled. At
that point, the server raises the white �ag of surrender, and visitors
are out of luck.

To combat this issue, I switched web-hosting companies �ve
times and spent hundreds of hours learning how to con�gure
WordPress servers to stay online under a heavy load. Each new
server con�guration increased in complexity, and each new
installation required more and more ongoing maintenance.

Eventually I was building my own custom server con�gurations,
invoking a long series of arcane system commands to install,

http://personalmba.com/

con�gure, and modify complex server applications I barely
understood. Every error or issue I experienced in setup or
maintenance devolved into hours of research and troubleshooting.

If that wasn’t enough, WordPress’s popularity and relative
insecurity make it a popular target for hackers and spammers.
Every week or so, a shady programmer �nds some new
vulnerability, then uses it to take over user accounts or �ll millions
of WordPress blog archives with spam. Securing a WordPress
installation and keeping on top of software updates can be a full-
time job in itself, particularly if you maintain multiple websites. (I
was maintaining twelve websites at the time and failing miserably.)

At a certain point, I realized that I was spending more time
keeping my sites online than I was researching and writing for my
readers. That made no sense. Not only was I wasting productive
capacity, I wasn’t really learning how to program. I was learning a
bunch of situation-speci�c hacks and workarounds that only applied
to running WordPress. Not cool.3

I decided to look for another way to maintain my websites, and it
didn’t take long to �nd a promising alternative.

A Potential Solution

One day, I stumbled upon an essay about Jekyll,4 a website
management program created by Tom Preston-Werner, best known
as the founder of the open source code repository GitHub.5 Jekyll is
designed to replace systems like WordPress by making it easy to
run websites that don’t rely on expensive requests.

Imagine you have hundreds of word processing documents that
contain important information and you need to make them all look
the same—same font, same heading style, et cetera. If you wrote a
program that could apply a given page design you choose to every
�le automatically (versus updating every �le by hand), it’d save
you a lot of time.

That’s essentially what Jekyll does for web pages. Run a single
command and Jekyll produces a complete website using the �les on
your computer that contain your website information and design
template. If you make a change to the design or page content, you
just run Jekyll again, and the entire site will be updated with the
changes automatically, saving you hours of e�ort.

Jekyll presented a promising opportunity. In theory, I could
replace WordPress with a simple folder of text �les on my
computer. My website would be blazing fast, ultra stable, and I’d
save myself over one hundred hours of server maintenance every
year.

There was, however, a catch: Jekyll is written in Ruby, a
programming language I don’t know. I don’t have any idea how to
write code in Ruby or run Ruby applications that serve real users.
Some of the things I need to do to run PersonalMBA.com require
more than simple formatting.

To run my websites using Jekyll, I’d have to learn how to
program and deploy Ruby web applications.

Looks like I’ve found a “lovable problem.”

Learning to Code

I’ve wanted to learn how to program for quite a while, but other
projects have always taken priority. If I can learn to code, my
publishing and business opportunities will expand considerably,
since everything I do to build my business runs on the web.

It’s important to note that everything I’ve been doing to date is
not programming. HTML and CSS, the languages I use to build web
pages, are called “markup” languages. HTML and CSS code isn’t
smart in any way: it simply tells the computer to show the user a
text �le in a speci�c way (i.e., “make this text bold” or “this section
is a heading with a 24-point font size”).

http://personalmba.com/

The same is true for my crazy server setup. Even though I was
putting together software, I wasn’t really programming. Instead, I
was installing prewritten programs, then changing a few settings.
Programmers wrote the applications I was using, but I didn’t need
any knowledge of programming to use them. Server con�guration
and administration is a useful skill, but it’s not programming.

So What Is “Programming”?

My �rst thought is that programming is telling a computer to do
things, but that isn’t very speci�c or helpful. Do what? What
“things”?

Ten years ago, I took two basic programming courses in college,
so not being able to come up with a useful de�nition is a bit
embarrassing, frankly. I remember a few basic terms, like variable,
loop, input, output, function, object orientation, and something called
a bubble sort, but not a whole lot else.

The course assignments required learning a programming
language called C++, and I remember being frustrated when it took
hours to �nd a missing semicolon that kept crashing my program. I
remember my professor saying things like “you’ll never use a
bubble sort for a real application, but we’re going to learn it
anyway.”

I wrote a few basic programs for the course because I had to: the
goal was to pass the class with a good grade, and I did.
Unfortunately, the programs we were writing had no real use
outside of the classroom, and I haven’t used these concepts in a long
time. Even though I remember a few words, I’ll have to start over
in terms of understanding the key ideas.

Since I’m not able to speci�cally de�ne what I’m trying to do
when I say I want to “learn programming,” I’m going to have
trouble de�ning a useful target performance level. “Create a
computer program” is a bit more speci�c, but still not very useful.

Time to unpack what I currently know about programming:

I know programmers “write” programs, which suggests that it’s a creative exercise
that can be done in many ways.
Programs are often called “applications,” and the words are used interchangeably.
When computer programs are “run” or “executed,” they do the thing they were
written to do, whatever that happens to be.
“Input” and “output” are easy to remember, since they’re in common usage. Input
is information or data the program uses, and output is what you get when the
program is done running.
A “variable” is basically a placeholder for something that changes. You can create
as many variables as you want, and make those variables stand for whatever you
want.
The “program” itself is essentially a detailed set of instructions and rules that tells
the computer exactly what to do to (or with) the input. When the program is done
running, it gives you the output.
Programs “crash” or display an error message when something goes wrong or the
computer can’t �gure out what to do next.

Now we’re getting somewhere. This is a very basic
deconstruction: instead of “programming,” we now have three
subconcepts to work with:

Input—information you use to execute a process.
Process—a series of steps the program takes, given the input.
Output—the end result of the program.

This breakdown is much more useful. “Writing a computer
program” means de�ning what information you’re starting with,
de�ning a series of steps that describes exactly what the computer
will do with that input, and de�ning the output the computer will
return when the program is �nished running.

Think of a �owchart, which appears to be a useful mental hook
for how programs work. You start the process with certain inputs.
Along the way, you take certain actions when speci�c conditions are
true or false. The process ends when you reach the end of the
�owchart, and you’re left with the output: the end result of the
complete process the �owchart describes.

Creating a computer program seems to be a di�erent way of
doing the same kind of thinking you do when you create a
�owchart. You ask the same sorts of questions:

What am I starting with?
What happens at the beginning of the process?
What happens after that? After that?
When does the process end?
What do I have when the process is done?

Flowcharts describe the answers to these questions in a visual
format, and programs describe them using text, but the thought
process is the same.

The �owchart analogy is also useful because it provides a few
clues about other concepts that are probably important.

Conditionals are statements like:

“If X is true/false then do Y”
“If X is/isn’t Y then do Z”
“When X is true/false then do Y”
“When X is Y then do Z”
“While X is true/false then do Y”
“While X is Y then do Z”

X, Y, and Z in this case are variables, which can stand for
anything. Variables may stand for numbers, like in basic algebra, or
they may stand for words. Sometimes variables are single letters or
symbols, and sometimes they’re words. Either way, they represent
whatever we’re working with.
Conditionals (the IF, THEN, WHEN, and WHILE parts) are like

the arrows with questions on a �owchart. Think of driving a car: IF
the tra�c light is red, THEN stop. WHEN the tra�c light turns
green, THEN go. WHEN the tra�c light is yellow, slow down and
prepare to stop.

It’s worth digging into these conditional statements a bit more,
since there are a few common patterns. True/false appears a lot,

and WHILE seems to imply we keep doing something instead of
taking a single action.

In all cases, the conditional contains some statement that de�nes
whether or not to take action. This statement is called a condition,
and it can take many forms. Sometimes the condition is a basic
true/false (Is the light red?) comparison, sometimes it’s a
mathematical comparison (Is X greater than 100?), and sometimes it
contains logic (Is the stoplight NOT red?).

The purpose of the condition is to de�ne whether or not the
associated process should happen. If the condition is true or valid,
the program processes the instruction. If it’s not, the associated
instruction is skipped, and the program goes to the next instruction.

True/false variables are called Boolean variables, which is a fancy
phrase for something that only has two options. Yes/no and on/o�
are also Boolean variables. Boolean variables are pretty important
in computer programs, since they’re the basic unit of both simple
processes (like the true/false in a �owchart) and the on/o� �ipping
of the tiny electronic switches at the core of the computer.

WHILE, in this case, is a special type of conditional called a loop.
Loops cause the process in question to repeat until the condition is
met. Going back to the driving analogy: WHILE the tra�c light is
red, don’t move.

Pretty easy, right? If we think of writing a computer program like
drawing a �owchart, the basic process is easier to visualize.

There’s one last wrinkle: what if the computer gets stuck, doesn’t
know what to do, or the instructions the computer tries at some
point don’t work or make sense? What happens?

The program “crashes”—the program stops completely, and often
outputs an error message instead of the desired result. We’ve all
experienced the dreaded Windows “blue screen of death” or an
“Error 404: Web Page Not Found” error while browsing the web.
Something unexpected occurs, the computer freaks out, and the
program crashes.

As a computer programmer, your job is to prevent crashes and
errors from happening. The best way to do that is to ensure the
program always has the information it needs to complete the
process as planned, but that’s not always possible. In cases where
uncertainty is unavoidable, it’s useful to have a way to recover
when the program fails while trying to complete a process.

These error-recovery statements are called exceptions, and they’re
very handy. You can think of them as error-speci�c conditionals: IF
the program is about to crash in X way, THEN do Y instead of
crashing.

Exceptions are a bit like adding a backup generator to a hospital
building. Most of the time, the generator just sits there doing
nothing. If the electricity goes out, however, the generator �res up,
and the hospital uses power from the generator instead of going
completely dark. That’s a very good thing if there are patients in
the hospital on life-support machines that require electricity.
Complete failures are dangerous, so backup plans are critical.

That’s basic programming, really. De�ning inputs. Setting
variables. Creating processes that lead to the desired outputs.
Thinking through those processes like a �owchart, adding
conditionals and exceptions as necessary. If all goes well, you
supply the inputs, run the program, and get the desired output.

This is a massive oversimpli�cation of a very complex activity,
but it’s detailed enough to be useful for someone new to
programming. By deconstructing programming in this way, it’s
easier to know where to start.

Programming Languages

Here’s the tricky part: computers don’t speak languages in the same
way humans do. At the core, computers work by �ipping tiny
electronic switches on and o� in very speci�c ways. Unless the
computer has some way of translating our human-language

commands into electronic switch-�ipping, the computer won’t be
able to do what we command.

That’s what programming languages do: they give a human
programmer a speci�c way to tell the computer when to start, what
to do, and when to stop. They also allow the programmer to de�ne
what the inputs, processes, and outputs look like, and what to do
when the program is done running.

Each programming language has a speci�c way of writing
commands, called a syntax. The language’s syntax contains the rules
the computer uses to translate the program commands into tiny
electronic switch-�ips.

Pretty much every language has a way of de�ning variables,
conditionals, and exceptions. The details vary, but the core concepts
are the same.

Thinking Like a Programmer

Programmers often think through problems in what’s called
pseudocode: language that looks or sounds like code, but isn’t
speci�c enough for a computer to actually execute. Think of it as a
form of sketching. Pseudocode helps you think through the process
of solving a problem.

The driving example I’ve been using is an example of
pseudocode. If I got in my car and said, “IF I turn the key, THEN
start the engine” out loud, nothing would happen. That doesn’t
mean the statement is useless. The statement is just a way of
thinking through the steps required to solve a problem or get a
desired result.

You can use the basic programming concepts we’ve just discussed
to sketch out some simple programs for common tasks.

Here’s a fun way of trying this yourself. Find a friend, and ask
them to help you complete a simple task like “make a sandwich.”
The only rule is that your friend can only do exactly what you tell

him, nothing more, nothing less. He is not allowed to assume
knowledge of anything, and has to take every request literally.

In minutes, you’ll �nd yourself having a conversation like this:
You: Pick up the bread.
Friend: I don’t understand “pick up.”
You: Move your hand to where I say and grasp it.
Friend: I don’t understand “hand.”
You: (Sigh) This thing right here. [You point to the friend’s hand.]
Friend: Understood.
You: Move your hand to where I say and grasp it.
Friend: I don’t understand “grasp.”
You: Flex your �ngers like this. [You demonstrate, �exing and releasing your �ngers.]
Friend: Understood.
You: Move your hand to the bread and grasp it.
Friend: I don’t understand “bread.”
You: This thing right here! [You point to the bread.]
Friend: Understood.
You: Move your hand to the bread and grasp it.
Friend: [Moves hand to bread, �exes �ngers, and releases. The bread doesn’t move.]
You: THIS IS A STUPID GAME!!!

It’s a silly example, but it’s very close to what programming
looks and feels like, particularly at the beginning.

The computer, like your friend, can’t understand anything you
don’t explicitly de�ne. Any complex process you try to de�ne needs
to be speci�ed completely and unambiguously.

That’s what makes programming di�cult: a single ambiguity or
stray command can cause the entire program to fail. Programming
is an unforgiving craft in this respect: your code is either correct or
incorrect, and must be expressed in exacting detail.
Computers are not impressed by charm or wit. If your code is

incomplete or ill formed, your application will crash, you’ll lose
data, and/or you’ll create a bug: a bit of rogue code that produces
unexpected or unforeseen consequences. Like math, the logic either
works or it doesn’t. There is no A for e�ort.

That said, in programming there’s no single universal solution to
a given problem, as there is in math. There are thousands of ways
to produce your desired output given the speci�ed inputs. As a

programmer, you get to choose your approach based on the tools
you have at your disposal.

Once you get used to the fact that the computer can’t read your
mind, you learn to start giving commands the system can
understand, in the same way you learned to explicitly de�ne terms
and demonstrate basic actions to your friend in the “Sandwich
Game” before giving complex commands.

What Makes Web Application Programming Di�erent?

We now have a working de�nition of programming. It’s very
simpli�ed, but it provides a good enough understanding of what
we’re trying to do for now.

I’m not interested in every type of programming, though: I want
to write programs that run on websites. If you’ve ever used a web-
based e-mail program like Gmail, Hotmail, Yahoo Mail, or the like,
you know what I’m talking about. These programs run in your
Internet browser. You don’t have to download a software program
to your computer to use them. You just point your browser to the
website, log in, and you’re ready to go.

This distinction between software that runs locally and software
that runs remotely on a web server is an important one. To develop a
web application, you �rst have to write the application and then
test it to see if it works. All of the development and testing happens
on your own computer.

Once the program works, you then send it to the “production”
web server so other people can access it. People on the Internet
can’t log into your personal computer from the web, so uploading
the software to a publicly accessible web server is necessary for
other people to use your program.

That means the development process has two major phases: local
programming and testing, and pushing the �nished program to a

remote production server for actual use. I’ll have to �gure out how
both of these phases work.

Here’s something else I know from my previous experience with
HTML and CSS: they’re “dumb,” in that you can’t ask a basic web
page to store any information.

Say you have a web page �le that says, “Hello, World!”6 and you
want to replace “World” with the name of the person visiting the
page. It’s a nice thought, but basic web pages don’t have any way
of storing information for later recall. They just display the text in
the �le, and the �le isn’t allowed to update itself.

The technical term for this is state. Basic web pages built using
HTML and CSS have no state, so they’re referred to as “stateless”
resources. You can add a small form to a web page that asks for the
user’s name with a Save button next to it, but the button won’t
actually save any information unless you create a separate place for
that information to go.

That’s why web applications use two common approaches to
saving data for later: databases and cookies.

The best way to understand what a database does is to imagine a
stack of index cards. Let’s say you’re trying to create an address
book, and you want to capture the name, phone number, e-mail
address, gender, and age of each of your friends.

Each friend gets their own index card, and their information is
recorded on that card. If one of your friends changes their e-mail
address, for example, you can erase the old information and update
the card with the new information. When you look at a particular
friend’s card, you can see all of their information at once.

You can think of the entire stack of index cards as a database.
Each card in the stack is called a record. You can have as many
records in the database as you like, but at some point, the stack
becomes hard to manage. It often makes sense to split the stack into
a few smaller substacks: friends and family in one stack, colleagues
from work in another, for example.

Clear so far? Here’s where it gets cool: imagine your stack of
index cards is now a magic stack of index cards. You can talk to the
magic stack and command it to show you cards that �t certain
conditions, such as

“Show me John Smith’s card.”
“Show me all of the cards where gender is female.”
“Show me all of the cards where age is greater than �fty.”

Pretty useful, right? In essence, that’s what databases do: they
give you a way to store structured information, as well as a way to
retrieve that information however you want.

Each of the pieces of data we put on the card is called a field. The
more �elds you have in your database, the more ways you can
potentially retrieve the data when you want it.

Databases are the most common way to store data in a web
application. If you want to store information like a user’s name, e-
mail address, and other information, using a database is a natural
�t. Once John Smith logs in to your application, you can have your
application retrieve the name from John’s database record, then
display “Hello, John Smith!”

The other common way to store information in a web application
is by using a cookie: a very small text �le that’s saved on the user’s
computer. Cookies are useful for storing small amounts of data that
don’t need to exist for very long.

In the case of our address book program, it’d be appropriate to
store a cookie when John Smith logs in. John’s cookie �le would
contain information like username = johnsmith and loggedin = true.
If Smith left the application, but came back later, the application
would recognize the cookie and grant him access without requiring
another login. Cookies can be set to expire in a set period of time,
which makes them handy for this sort of programming. (If you’ve
ever seen a “Remember this password” feature on a website, this is
how it works.)

What we’re doing here is basic deconstruction. This isn’t an
exhaustive list of what makes web programming unique, but it’s
complete enough to provide a simple framework of what I’ll need
to learn: variables, conditionals, exceptions, local/production
environments, databases, and cookies.

See how this breakdown is useful? I started with a very vague
idea of what I wanted to do, and now I have a speci�c list of key
subskills that are important to learn.

I’m not ready to jump in yet, though. Remember I mentioned that
computers can’t understand human language? I need to choose a
programming language to write my program’s instructions, which
will require a bit more research.

Choosing a Language for Web Application Programming

There are thousands of di�erent programming languages available,
and new languages are being invented every day. Each language’s
syntax is di�erent, and is heavily in�uenced by what the language is
designed to accomplish. Some languages are more optimized for
certain tasks than others.

Before jumping in, I decided to take an hour to poke around a
few major programming websites to see which language working
web application developers recommend. This early research will
help me decide what language to learn and which early skills I need
to practice.

Two of the most popular destinations for programmers are Stack
Over�ow7 and Hacker News,8 so I begin by browsing for advice on
the best language to learn.

Stack Over�ow is a question-and-answer website: a place to ask
“How do I do X?” sorts of questions. More knowledgeable and
experienced coders usually respond to questions with speci�c
suggestions, approaches, or bug �xes, making Stack Over�ow the
best destination for getting help on tricky programming problems.

Hacker News is a social news website: a collection of links with
associated discussions. The topics on Hacker News change minute to
minute, but usually revolve around new developments in
programming, technology, and business, making Hacker News an
ideal place to browse for at least semi-informed opinions on new
developments in programming.

New languages, libraries, and techniques are created by
programmers around the world every day. Some combinations of
technologies and approaches are useful for some problems, and
others aren’t. Often, you can’t tell until you try them.
“Best,” in programming terms, is relative to the problem you’re

trying to solve and your particular priorities. In general, the advice
is to (1) choose tools that allow you to solve the problem e�ciently
and (2) if you have a choice, choose tools you enjoy using. Fair
enough.

Browsing the archives of Stack Over�ow and Hacker News gave
me a huge case of information overload: there’s too much
information to process at once, particularly if you’re not familiar
with the terminology. I needed to reduce the noise if I wanted to
�nd more speci�c advice.

Here’s a tactical research trick that most people don’t know:
popular search engines allow you to limit your search to a speci�c
website instead of the entire web. The code to do this in Google
looks like this:

“search phrase” site:example.com

Replace “search phrase” with the term you’re searching for, and
“example.com” with the website you want to search. The quotation
marks mean to search for exact matches of the search phrase.
Without the quotation marks, Google will return pages that contain
all of the words in the phrase, but not necessarily in that order.

Using this technique, I searched several variations of the phrases
“web application programming,” “learn to code,” and

http://example.com/

“programming for beginners,” then spent another hour or so
reading the results.

Here’s what I found: experienced web developers currently
recommend beginning with one of two common languages: Ruby or
Python. Ruby and Python, by reputation, are relatively easy to
learn, powerful, and give you a good foundation in important
programming concepts. Ruby is a bit more popular with
programmers who focus on web applications, while Python is more
popular with scientists and mathematicians due to its wide variety
of science, math, and graphing libraries.

Ruby and Python each have active communities of developers,
loads of free available resources and well-written books, and pre-
existing programs and tools that make important features easier to
implement. Choosing which language to work with appears to be
mostly a matter of preference.

After reading a few examples of code written in each of these
languages, I decided to learn Ruby. To my untrained eye, Ruby code
looks clean, readable, and seems relatively easy to understand.
Since the major ideas and techniques I learn using Ruby will transfer
to the other languages I may decide to learn later, I might as well
make the learning process enjoyable at the beginning.

In addition, there are a number of programs and tools I’d like to
use that support or require Ruby. In particular, Jekyll is written in
Ruby, so learning Ruby will help me solve a pressing problem.
Similar tools exist for Python, but look more complicated to use.

Choosing a Framework

In addition to advice on programming languages, working web
application programmers have strong opinions on frameworks:
libraries of code that make it easier to do things that most
applications need to do.

Libraries are important because computers do exactly what you
tell them to do. Nothing more, nothing less.

That’s tricky, because the code you provide is all that exists as far
as a computer program is concerned. It’s like the quotation by Carl
Sagan, the famous physicist: “If you wish to make an apple pie from
scratch, you must �rst invent the universe.”

Your program’s “universe” is de�ned by (1) the instructions and
commands in the codebase, (2) the libraries your program imports,
and (3) the system the program is running on. If the code that’s
necessary to complete a given operation doesn’t exist somewhere in
the system, your program will crash or return an error.

Most programming languages contain many common libraries
that most programs need, but few specialized tools. That’s where
frameworks come in. Instead of coding everything from scratch,
which would take a very long time, using a framework lets you
import and use tested, reliable libraries for specialized tasks,
allowing you to focus on the core of your application instead of
reinventing the universe.

Frameworks can be large or small. Some frameworks include
many functions and commands in an attempt to save the
programmer e�ort, and others are more minimal, covering only a
few essential functions.

At the moment, Ruby boasts several major web application
development frameworks, of which two are the most popular: Ruby
on Rails9 and Sinatra.10

Ruby on Rails (often abbreviated to Rails) is one of the �rst major
web application frameworks developed for Ruby. Created by David
Heinemeier Hansson in 2004, Rails is easily the most popular Ruby
framework and was used to develop several successful applications
at 37signals,11 a privately held web application company where
Hansson is a partner. To date, thousands of businesses have
developed large business-critical web applications using Rails.

Rails relies heavily on “generators”: built-in programs that create
large amounts of boilerplate code with a single command. The
boilerplate is then modi�ed based on the programmer’s unique
requirements. Instead of spending hours creating an application
from scratch, Rails helps developers create a functioning app
without a lot of e�ort, provided they know what they’re doing.

Sinatra, on the other hand, is a minimal framework designed and
developed by Blake Mizerany. Instead of relying on generators,
Sinatra focuses on giving the developer a few simple common
functions that most web applications need, then getting out of the
way.

Sinatra applications look and feel simple compared to Rails
applications. A single command in Rails can generate ten or more
folders and twenty or more �les. In contrast, it’s not uncommon for
a Sinatra application to be fully contained in a single �le. Instead of
generating a ton of code that may need to be removed, Sinatra
development rewards keeping the project simple and adding just
enough code to do the job.

Like choosing a language, choosing a framework is mostly a
matter of preference and selecting the best tool for the job. Rails
tends to be preferred for large projects with multiple programmers,
and Sinatra is generally better suited for small projects. There are
many overlapping features, so a recent analysis on RubySource.com
concludes that it’s ultimately a subjective choice.12

GitHub is an open source code repository many programmers use
to release and maintain their projects. It’s easy to �nd examples of
applications written in Rails and Sinatra to get a feel for each
framework, so I spent another hour browsing public projects.

There’s a nontrivial risk here: in order to make progress in
programming, you have to commit to something. Once you’ve
chosen a language and a framework, it’s much easier to begin
learning everything you need to know to write a program. If you

http://rubysource.com/

resist making a choice, however, you can spend years trying to �nd
the “perfect” programming environment.

It’s better to pick a language and framework that appeals to you,
commit to exploring it for a while, and accept the inevitable
tradeo�s than to spend years “researching” and making zero
progress. Browsing Stack Over�ow and Hacker News all day is not
programming.

In the end, I decided to start with Sinatra. Even though Rails
generators can save a lot of time if you know what you’re doing, I
don’t know what I’m doing.

My intuition tells me that Sinatra is the best choice at this point.
The syntax is clear, simple, and easy to understand. The only code
that exists in a Sinatra app is code the developer adds. The
framework is well documented, and it’s easy to �nd examples of
working applications on GitHub, as well as help on Stack Over�ow.

I may experiment with Rails at some point in the future. For now,
I’m starting with Sinatra.

Deconstructing the End Result

Approximately �ve hours of preliminary research has yielded
everything I need to get started: a deconstruction of web
programming, a language, a framework, and a speci�c project.
Time to get to work.
“Code a Sinatra application that serves a Jekyll website”

represents a decent target performance level, but I need to
deconstruct what goes into that statement to �gure out what to do
next. What do I have to be able to do?

One more hour of research determines the following:

1. Running Jekyll creates the �nished website from local static �les. I’ll need to create
an HTML template for the website with special formatting tags, and export my
archive of posts from PersonalMBA.com, which is described in a tutorial created by
Paul Stamatiou.13

http://personalmba.com/

2. The Sinatra application handles requests from website visitors, delivering the
requested �les. I’ll need to write this application from scratch.

3. Both the �nished Jekyll website and Sinatra server application need to be uploaded
to a website host.

4. To complete all of these tasks, I need to �gure out how to install the latest version of
Ruby on my machine, as well as Sinatra and other programs I need.

This last requirement is a good example of obtaining critical tools.
If I can’t �gure out how to install Ruby on my machine, I can’t do
any of the subsequent steps, so it’s the best place to begin.

It’s important to note that web technology changes daily. It’s very likely that the
specific series of commands in this section will be obsolete by the time you read
this. Don’t worry: the method is what’s important, not the commands.

Likewise, you’re going to be tempted to gloss over the code sections of this
chapter. It’s a natural impulse: it looks complicated, and you won’t immediately
recognize what it means.

I encourage you to fight this impulse. These names, commands, and symbols are
as unfamiliar to me as they are to you. This chapter is about the process of
figuring out what this stuff means and how to use it. If you try to read the code,
you’ll get a lot more from this chapter.

Onward!

Upgrading Ruby

I already have a computer, which is a start: you can’t program
without one.

At present, I’m using an Apple MacBook Air that’s running the
Mac OS X 10.6 operating system. A quick search indicates that the
operating system comes with Ruby version 1.8.7 preinstalled, which
is good news: theoretically, I can start running Ruby programs on
my own computer right away.

The trouble is that Ruby 1.8.7 isn’t the latest version of Ruby.
When I try to install Jekyll, the system tells me the program
requires at least version 1.9.1, which means I’ll have to �gure out
how to upgrade. Back to Google I go.

Some basic searching turned up two programs that are designed
to make managing Ruby installations easier: rbenv and ruby-build.
Both programs are maintained by Sam Stephenson, a Ruby
developer at 37signals. Together, these programs help you install
new versions of Ruby and tell your computer which version of Ruby
to use.

There’s a tutorial on the rbenv documentation page14 that shows
how to install the programs on your machine. Here’s what the
installation commands looks like:

$ cd ~
$ git clone git://github.com/sstephenson/ruby-build.git
$ cd ruby-build
$ sudo ./install.sh
$ cd ..
$ git clone git://github.com/sstephenson/rbenv.git .rbenv
$ mkdir -p ~/.rbenv/plugins
$ cd ~/.rbenv/plugins
$ git clone git://github.com/sstephenson/ruby-build.git
$ echo ‘export PATH=“$HOME/.rbenv/bin:$PATH”‘ >> ~/.bashpro�le
$ echo ‘eval “$(rbenv init -)”‘ >> ~/.bashpro�le
$ exec $SHELL
$ rbenv install 1.9.3-p125
$ rbenv rehash
$ rbenv global 1.9.3-p125

This looks intimidating, but it’s just a list of commands. Let’s
break it down.

These commands are entered into a program called Terminal,
which comes preinstalled on Apple computers. If you’ve ever seen
hackers in movies typing frantically into computers that are
displaying long lines of text, those computers are running a
Terminal program.15

I open Terminal and enter the �rst command:
$ cd ~

This command is easy to understand. $ is what Terminal displays
when it’s ready for a new command, so it’s already there. cd is an

http://github.com/sstephenson/ruby-build.git
http://github.com/sstephenson/rbenv.git
http://github.com/sstephenson/ruby-build.git

abbreviation of “change directory,” which is another term for
folder. A quick search tells me ~ is an abbreviation for “user’s home
folder,” the folder in my computer where my user pro�le is stored.

I type the command and press the Enter key. Now, Terminal
displays this:

joshkaufman $

That’s good news: I’m in my home directory. So far, so good. I
type the second command:

$ git clone git://github.com/sstephenson/ruby-build.git

The computer returns:
git: command not found

Looks like the program git isn’t installed on my machine. I’ll
have to �gure out how to install it.

What’s a “Git”?

After searching for instructions on how to install git on Mac OS X, I
�nd the Heroku Toolbelt.16 Heroku17 is a web application server
hosting company, so they have a vested interest in making it easy
for developers to create web applications.

The Heroku Toolbelt is a program that installs a few common
software development tools programmers need to develop
applications on Heroku. git18 is one of those programs.

I download the installer package, run it, and receive a
con�rmation that everything is set up correctly. Time to try the
command again:

$ git clone git://github.com/sstephenson/ruby-build.git

I get this output:
Cloning into ruby-build …
remote: Counting objects: 1004, done.
remote: Compressing objects: 100% (453/453), done.

http://github.com/sstephenson/ruby-build.git
http://github.com/sstephenson/ruby-build.git

remote: Total 1004 (delta 490), reused 937 (delta 431)
Receiving objects: 100% (1004/1004), 108.77 KiB, done.
Resolving deltas: 100% (490/490), done.

Success! “Done” is a good sign, and I didn’t get an error message.
Onward.

I continue with the rest of the commands. Based on the
information in the installation tutorial, all I’m doing is downloading
the necessary �les, using a command called echo to automatically
add a bit of text to my computer’s con�guration �les, then
restarting a program on my computer called SHELL to save the
changes. Once the SHELL reboots, rbenv and ruby-build are
installed. Yay!

Now it’s time to install the latest version of Ruby:
$ rbenv install 1.9.3-p125

The program automatically downloads the Ruby source code and
builds it, spitting out an impressive amount of scrolling information
in the Terminal program in the process. (Now I’m starting to feel
like a proper Hollywood programmer.)19

$ rbenv rehash

This command, from the documentation, helps the computer
recognize there’s a new version of Ruby installed.

$ rbenv global 1.9.3-p125

This command sets version 1.9.3-p125 as the default version of
Ruby on this computer. The tutorial tells me to run this command to
make sure my computer is using the new version:

$ ruby -v

Here’s what I get:
ruby 1.9.3p125 (2012-02-16 revision 34643) [x8664-darwin11.3.0]

Success! That’s what it’s supposed to say, based on the tutorial.

According to the documentation, if I want to install a new version
of Ruby on this computer, all I have to do is run rbenv install, rbenv
rehash, and rbenv global again. Easy enough.

Even though the commands looked intimidating at �rst, they’re
actually quite simple. What looks like gibberish is just abbreviation.
Once you know what the abbreviations stand for, the commands
themselves are easy to understand.

Remember, no one is born knowing this stu�. Most of the time,
all you need to do is spend a few minutes reading the
documentation, then try what it tells you.20

Installing Ruby Libraries (Gems)

Now that the latest version of Ruby is installed, it’s time to �gure
out how to install the libraries I need, including Sinatra.

Ruby libraries are called gems, and it turns out they’re very easy
to install. Here’s the command that installs the Sinatra gem:

$ gem install sinatra

To update Sinatra, here’s the command:
$ gem update sinatra

It doesn’t get any easier than that!
Before I install too many libraries, however, I want to make sure

the gem program is up-to-date. Since my computer shipped with an
old version of Ruby, it seems likely the related software will need
an update as well.

After a bit of searching, I �nd the command to update the Ruby
gem program:

$ gem update--system

Easy enough.
As I run the gem install command, I notice that the command also

installs additional gems, like rack, rack-protection, and tilt. These

extra libraries are called dependencies. Sinatra relies on them to run,
so the gem install command installs them automatically.

Hitting the Books

Now that I’m ready to run Ruby applications, I decided to pick up
two general Ruby reference books that came highly recommended
on Stack Over�ow: The Well-Grounded Rubyist (2009) by David A.
Black and Eloquent Ruby (2011) by Russ Olsen. Both books are
introductory primers designed to introduce the reader to common
Ruby concepts and techniques, as well as basic reference texts.

I also purchased Sinatra: Up and Running (2011) by Alan Harris
and Konstantin Hasse. This book is designed to be a basic
introduction to the Sinatra framework. Even though Sinatra is very
well documented online, the book contains a lot of examples, which
will make it easier to �gure out how to use Sinatra for common
tasks.

While browsing for books, I also found several reference websites
that cover basic Ruby syntax:

The O�cial Beginner’s Guide to Ruby21

The Ruby Refresher22

Ruby Security Reviewer’s Guide23

That’s plenty of reference material to start with, so I set aside
ninety minutes to do a quick preview of everything I’ve collected so
far.

I sat down with each book, and did a quick scan of the table of
contents and index, noting terms and ideas that look important. I
also captured concepts that came up over and over again, as well as
the order of introduction. I read the headlines and sidebars. Once I
was done with the books, I did the same thing with the websites.

Here’s what I learned. In addition to variables, conditionals,
exceptions, and the other basics of programming, Ruby is built

around two core ideas: objects and methods.
Objects are the nouns of the programming world: they’re things

we can do something to (or with). Let’s say I want to create a new
variable in Ruby called �rstname, and I want it to contain my name.
In Ruby, that command looks like this:

�rstname = “Josh”

Simple enough. By putting “Josh” in quotation marks, I’m telling
Ruby that �rstname is a string: a sequence of alphanumeric
characters. That makes �rstname an object in the “string” class. (A
class is just a speci�c type of object with certain characteristics.)

Strings aren’t the only class of objects. Here’s an object that’s in
the integer class:

million = 1000000

If objects are nouns in programming, methods are the verbs:
they’re things we can do to (or with) an object.

Let’s say I have two string objects that contain my �rst and last
name:

�rstname = “Josh”
lastname = “Kaufman”

I can use a plus sign (+) to concatenate these strings, which is a
fancy term for “putting them together”:

fullname = �rstname + lastname

Pop quiz: what does fullname contain? If you guessed “Josh
Kaufman,” you’re wrong.

Remember, the computer will only do exactly what you tell it to.
We didn’t tell the computer to add a space between “Josh” and
“Kaufman,” so it didn’t. fullname equals “JoshKaufman.”

If we want to correct this little bug, we have to change the code
to add a space:

fullname = �rstname + “ “ + lastname

The + is a method, and how the method works depends on the
objects we use it on. If we use it on integers instead of strings, it
performs addition instead of concatenation:

sum = million + million

What does sum equal? “2000000”
Ruby’s built-in methods can help you do a lot of cool things right

away. Let’s say I want to see what my full name looks like
backward. Instead of �guring it out by hand or writing my own
little program to reverse the letters, I can just use the reverse
method available for every string object:

fullname.reverse

Here’s the output: namfuaKhsoJ
I can also use more than one method at a time. If I want to

reverse the letters in my name and convert all of the characters to
lowercase at the same time, I can run this:

fullname.reverse.downcase

Output: namfuakhsoj. Neat!
A large part of learning to code in Ruby appears to involve using,

creating, and manipulating objects, classes, and methods. The
language has a lot of them built in, and Ruby allows you to create,
modify, or remove objects, classes, and methods pretty much
however you want, which gives the language a lot of power and
�exibility.24

Ruby’s o�cial documentation25 contains the canonical list of all
of the objects and methods available for use. A quick glance is
overwhelming, but it helps to realize that you don’t have to use
them all. On the contrary, most of them are safe to ignore for now.
They’re options, ready to use when you need them.

The documentation serves another purpose: when you try to do
something that Ruby can’t understand, the resulting error message
will tell you where the program broke.

Let’s say we try to run a program like this:
animal = “Zebra”
number = 7
puts animal + number

The command puts is another way of saying print. We just want
the program to display what it thinks animal + number means.

Here’s what I get when I try to run the program:
TypeError: can’t convert Fixnum into String from program.rb:3:in ‘+’

In noncomputer speak: you can’t use arithmetic to add a number
to a word in a way that makes sense, so the computer displays an
error. It’s like trying to divide by zero: you just can’t do it, so the
program stops.

To �x the program, we either need to convert the number to a
string so the + method will concatenate the two variables instead of
trying to use arithmetic, or modify the program to do something
else.

Here’s a revised program:
animal = “Zebra”
number = 7.to_s
puts animal + number

When we run the program, we get the output “Zebra7.” The built-
in method .to_s converts the number 7 into a string, so Ruby can
use concatenation.

We could also do something completely di�erent, like this:
animal = “Zebra”
number = 7
number.times { puts “#{animal}” }

Here’s the output:
Zebra
Zebra
Zebra
Zebra
Zebra
Zebra

Zebra

We just used a basic conditional loop, which is built into Ruby:
number.times means “do this X times, where X equals the value of
the number variable.” If we change the value of animal or number,
we’ll change the output. (Yes, you can modify this program to print
“wombat” a billion times if you really want to.)

Commenting and Debugging

As I read, I also picked up another basic feature in Ruby:
commenting. Any time you begin a line of a program with # (often
called a “pound sign” or, less often, an “octothorpe”), Ruby
interprets that line as a comment and skips it.

Adding comments to a program makes it much easier to follow,
since you can explain in plain language what you’re trying to do.
Here’s how comments would look in my “Animal Print” program:

Assign variables
animal = “Wombat”
number = 1000000000
Print loop
number.times { puts “#{animal}” }

Commenting is also a basic troubleshooting technique: you can
comment out a few lines of code at a time to isolate issues or bugs.
Combined with well-placed print or puts statements, you can follow
a program’s execution step by step to make sure everything is
working as expected.

After a total of eight hours of research and installation, I’m now
running the latest version of Ruby, I can install any library I need,
and I have a basic understanding of how Ruby programs work.

It’s important to note that I haven’t actually programmed
anything of substance yet. The time so far has been spent doing
research, installing Ruby, and getting a feel for what it looks like to
write a Ruby program.

Let’s explore more complicated programs.

Kicking the Tires with IRB

In my Stack Over�ow research, I found an online Ruby tutorial
called Learn Ruby the Hard Way26 by Rob Sobers and Zed Shaw. The
tutorial illustrates how Ruby works by giving you examples of
simple Ruby programs and asking you to modify and run them to
produce speci�c results. If you don’t get the correct result, your job
is to experiment by modifying the program until you get the
intended result.

This “code, test, run, debug” method is a good example of a fast
feedback loop. When you run a program, the computer will let you
know in milliseconds whether or not it worked. If there’s a bug in
your code, you can change it and run the program again, testing
several variations in the space of a minute.

The �rst chapters of Learn Ruby the Hard Way involve setting up
Ruby, installing a basic text editing program, and learning how to
use IRB: a program that runs Ruby programs on your own
computer.

Here’s how it works. You type your program into a text editor
and save it in a �le. (Let’s assume the �le’s name is program.rb.)
When you’re ready to run the program, you type this into Terminal:

$ irb program.rb

IRB will run the program and give you the result. It will also
show you the steps the computer took to get to that result, which is
useful for debugging. If the program isn’t correct, IRB will spit out
a detailed error message.

Learn Ruby the Hard Way begins with assigning variables, doing
basic arithmetic, manipulating strings, and setting up basic
conditional statements, similar to the examples I just mentioned.
It’s a very structured, logical approach to learning the basics.

My original plan was to read Eloquent Ruby and The Well-
Grounded Rubyist, then complete all of the exercises in Learn Ruby
the Hard Way before attempting to write my �rst “real” program.

Around lesson 10, however, I noticed something important: I’m
getting restless and losing interest.

Here’s the core of the issue: I’m copying programs someone else
created and solving problems someone else de�ned. These programs
are sometimes interesting, but they don’t solve my problems.
Programming is starting to feel like an academic exercise instead of
a useful skill. I need to get out of research mode and into
implementation mode.

I don’t need to read all of the books, courses, tutorials, and other
resources I’ve discovered before I start programming. I need to
start writing real programs immediately, then refer to my resources
if and when I get stuck.

Time to get my hands dirty. …

Application #1: A Static Website in Sinatra

I already have an idea for my �rst web application: a Sinatra
application that serves a basic HTML website. Here’s my target
performance level for this application:

1. Create a basic working Sinatra application capable of delivering a simple website
to an end user (a reader).

2. Test the application on my computer to make sure it works.
3. Deploy that application to production on Heroku, making it “live” so real readers

can use it.

That’s it. No fancy features, just a very simple Sinatra program
running on a public server.

So where should I start? Let’s review my practice checklist:

1. Choose a lovable project.
2. Focus your energy on one skill at a time.
3. De�ne your target performance level.
4. Deconstruct the skill into subskills.
5. Obtain critical tools.
6. Eliminate barriers to practice.
7. Make dedicated time for practice.

8. Create fast feedback loops.
9. Practice by the clock in short bursts.

10. Emphasize quantity and speed.

I have a single, well-de�ned project. I’ve deconstructed the skill,
and I know what this program will look like when I’m done. That
brings me to critical tools: Is there anything I need to complete this
project that I don’t already have?

As it turns out, yes: I don’t yet have a Heroku account. That’s
easy to �x: I visit Heroku.com, click the Sign Up button, verify my
e-mail address, and create a password.

Since I’ve already downloaded the Heroku Toolbelt (the program
I used to install git), the Heroku gem is already on my computer, so
I’m set there as well.

Based on the instructions, there’s one last thing I need to do to
allow my computer to talk to Heroku: generate something called an
“SSH key,” a special �le that appears to serve as a password. Once I
have a key, I’m supposed to upload it to Heroku so the system can
recognize my computer and grant it access.

Fortunately, Heroku has a tutorial about how to do this.27 I run
this command to generate the key:

$ ssh-keygen -t rsa

… this command to log in to Heroku:
$ heroku login

… and this command to add the key to my Heroku account:
$ heroku keys:add

Great: I’m in. Now how do I start writing the application?

Creating the Basic App

Time to browse Heroku’s documentation. Great: there are two
guides that look useful:

http://heroku.com/

“Getting Started with Ruby on Heroku”28

“Deploying Rack-Based Apps”29

Based on these guides, it looks like I need to:

1. Create the program �les on my computer.
2. Add them to a “git repository.” (Whatever that is …)
3. Use the git push heroku master command to send the �nished application to

Heroku.

Fortunately, the tutorial includes an example, and it’s a Sinatra
application! This’ll be easier than I thought. …

I create a new folder on my computer. This folder is called the
“root” folder, and every �le in the program will be stored here.

Next, I open up my text editor (I’m using TextMate30) and create
three �les, following the instructions:

application.rb
con�g.ru
Gem�le

The core of the program will go in application.rb. Ruby
applications always end in .rb.

con�g.ru is where Rack con�guration settings go. Remember,
Sinatra is built on top of Rack, so it makes sense that it has a
separate con�guration �le. “Rackup” �les end in .ru.

Gem�le is the place to specify which gems the program will use.
Your program will only ever have one Gem�le, so it’s always called
“Gem�le.” Seems simple enough.

After creating the �les, the Heroku documentation suggests
writing a basic “Hello, World!” program to test the setup. Here’s
what goes in application.rb:

require ‘sinatra’
get ‘/’ do
“Hello World!”

end

Here’s what goes in con�g.ru:

require ‘./application.rb’
run Sinatra::Application

And here’s what goes in the Gem�le:
source ‘http://rubygems.org’
gem ‘sinatra’

That’s not a lot of code, and it’s pretty easy to understand.

The Gem�le tells the server to include the Sinatra gem, which is required to run the
application. The gem will be downloaded from RubyGems.org.
The con�g.ru �le sets up the main application, then executes the program.
Once the program is running, the program will display “Hello, World!” whenever
someone visits “/”, which is a shorthand way of referring to the home page of a
website.

Can it really be this easy?
The tutorial tells me there’s one more thing to do: store the �les

in a git repository (sometimes abbreviated to “repo”). I’m not
exactly sure what that means, but I know git is already installed,
and they supply the commands:

$ git init .
$ git add -A
$ git commit -m “Initial Commit”

The �rst command creates a new git repo in the current root
folder. The add -A command adds all of the �les in the folder to the
repo. The command commit -m” commits the �les to the repo,
alongside a message from the programmer that details what’s being
committed. (I’m not clear on the di�erence between “add” and
“commit” quite yet, so I’m making a note to explore this later.)

After entering these commands, the computer tells me:
[master (root-commit) 8ed1099] Initial commit
3 �les changed, 9 insertions(+), 0 deletions(-)
create mode 100644 Gem�le
create mode 100644 application.rb
create mode 100644 con�g.ru

http://rubygems.org/
http://rubygems.org/

Looks like it worked! There’s only one more thing to do: create a
new empty server in Heroku, then “push” my program to that
server.

I run this command to create the server:
$ heroku create

And I get this response:
Creating shielded-springs-2049 … done, stack is stack is bamboo-ree-1.8.7
http://shielded-springs-2049.heroku.com/ | git@heroku.com:shielded-springs-

2049.git
Git remote heroku added

Success! The “stack” details the software the server is running,
and the message gives me the public URL of the server.

Here’s the �nal command:
$ git push heroku master

If all goes well, I’ll have o�cially pushed my �rst application to
production on Heroku.

Here’s what I get:
Heroku receiving push
Ruby/Sinatra app detected
Gem�le detected, running Bundler version 1.0.7
Unresolved dependencies detected; Installing …
Using--without development:test
! Gem�le.lock will soon be required
! Check Gem�le.lock into git with `git add Gem�le.lock`
! See http://devcenter.heroku.com/articles/bundler
Fetching source index for http://rubygems.org/
Installing rack (1.4.1)
Installing rack-protection (1.2.0)
Installing tilt (1.3.3)
Installing sinatra (1.3.3)
Using bundler (1.0.7)
Your bundle is complete! It was installed into ./.bundle/gems/
Compiled slug size: 500K
Launching … done, v4
http://shielded-springs-2049.heroku.com deployed to Heroku

http://shielded-springs-2049.heroku.com/
http://git@heroku.com/
http://devcenter.heroku.com/articles/bundler
http://rubygems.org/
http://shielded-springs-2049.heroku.com/

Now, the moment of truth … I open a web browser, navigate to
http://shielded-springs–2049.heroku.com, and this is what I see:

“Hello, World!”

VICTORY!

Warning, Warning!

The program worked, but I also got a warning message. What is
Gem�le.lock?

Heroku’s Ruby documentation shows that the system uses a
library called bundler31 to install gems on Heroku. It’s a gem, so I
can install it locally by running:

$ gem install bundler

Bundler is necessary because Heroku doesn’t install any gems in
your application by default. For security reasons, Heroku doesn’t
give me the same level of computer access as I have on my
machine, so there’s no way I can run gem install sinatra directly in
my account.

Instead of giving me (or any other user) dangerous levels of
system access, Heroku uses bundler to install gems speci�ed in
Gem�le. Once you’ve identi�ed which gems you want to install in
your application, you run this command on your computer:

$ bundle install

This command creates a new �le called Gem�le.lock in your
program. When you upload your �les to Heroku, the system looks
at Gem�le and Gem�le.lock, veri�es they’re the same for security,
downloads the gems, then installs them for you.

If you look at the output when I pushed the program to Heroku,
you can see that the system installed bundler automatically as a
dependency. Instead of displaying an error message, Heroku’s

http://shielded-springs-2049.heroku.com/

engineers added an exception to the program to install the program
automatically and display a warning instead of crashing.

The system worked this time, but in the future, I’ll have to add
Gem�le.lock to the git repository before I push the application.
Good to know!

Sinatra Takes the Stage

Now that my simple application is up and running, I can �nally
begin learning how Sinatra works. Sinatra’s documentation32 is
very comprehensive, and full of examples, so that’s where I decided
to start.

The core of Sinatra applications is called a route. The best way to
understand this idea is by example.

Our basic Sinatra application has a single route, which contains
the “root” of our little website. Internet users usually refer to the
website root as the home page of a website.

If you visit google.com or yahoo.com, your web browser sends a
request to Google or Yahoo’s servers. This request is called a GET
request, and it asks the server to show you whatever is in the
website’s root directory. The protocol, or format the computer uses
to send the request, is called HTTP, which stands for “hypertext
transfer protocol.” That’s what the “http://” you often see at the
beginning of web addresses means.

GET is the most common type of HTTP request, but it’s not the
only type. There are three additional HTTP “verbs”:

POST—send a resource to the server
PUT—update a resource on the server
DELETE—remove a resource on the server

If you’ve ever posted a public comment on a website, your witty
remarks were sent to the server using a POST command. If you
made a mistake and edited the comment, your update was sent via a

http://google.com/
http://yahoo.com/

PUT command. If you decided the comment was dumb and chose to
remove it, the browser sent a DELETE command.

Routes that contain GET, POST, PUT, and DELETE commands are
the core of how Sinatra applications work. Each route you create is
a conditional: “Do X if a GET/POST/PUT/DELETE command is
received on route Y.”

Sinatra routes can also contain variables, which are called
parameters. Sinatra applications usually use parameters as inputs for
the process contained in each route.

Let’s modify our simple Sinatra “Hello, World!” application to
greet our user by name. Here’s a route that will do it:

get ‘/hello/:name’ do
“Hello, #{params[:name]}!”

end

You can see this in action at http://�rst20hours.com/hello/name.
Feel free to replace “name” with your name. It works!

This application works by allowing the server to look at whatever
is in the “name” part of the route, then use it in the application. The
command in the route is a simple instruction to display the “name”
parameter to the user.

Sinatra allows you to name parameters (like :name), but it also
has a “wildcard” parameter (also called a “splat”) that can contain
anything. Here’s how we’d use it in our modi�ed “Hello”
application:

get ‘/hello/*’ do
“Hello, #{params[:splat]}!”

end

That’s pretty cool. Between named parameters and wildcards, you
can create some very smart routes. The routes you create determine
how your Sinatra application works.

That’s enough detail to �gure out how to write a program that
satis�es my target performance level. Since Jekyll is creating the
actual �les the application will be delivering in response to user

http://first20hours.com/hello/name

GET requests, all I need to do is write a few routes that accept these
requests, �nd the correct �le in the system, and deliver it to the
reader.

Based on Jekyll’s documentation, the program places the �nished
web pages in a folder called “site” in the root directory. The route
to that page is automatically generated by Jekyll. If we want our
website’s About page to be available at http://example.com/about,
we set a route of /about in our Jekyll �les, and the program will
create the �le in _site/about/index.html in our website’s root
folder.

That means I have to create a new route in Sinatra to read a �le
in response to the user’s GET request. Here’s what that looks like:

Index handler
get ‘/?’ do
File.read(“_site/index.html”)
end

Post handler
get ‘/*/?’ do
File.read(“_site/#{params[:splat]}/index.html”)
end

File.read(“”) is a command that’s built into Ruby. File is an
object, and .read is a method. The usage is pretty straightforward:
what goes in the (““) part is the location of the �le you want the
program to read, relative to the application’s root folder. Easy.

What if the �le doesn’t exist? That calls for an exception, and
Sinatra has two basic error routes built in: not_found and error.
Let’s make both routes return the same error page:

not_found do
File.read(“_site/error/index.html”)
end

error do
File.read(“_site/error/index.html”)

end

http://example.com/about
http://_site/about/index.html
http://file.xn--read%28_site-249f/index.html%E2%80%9D
http://file.xn--read%28_site-249f/#{params[:splat]}/index.html%E2%80%9D)
http://file.xn--read%28_site-249f/error/index.html%E2%80%9D)
http://file.xn--read%28_site-249f/error/index.html%E2%80%9D)

Everything else stays the same. I’m not going to make any
changes to con�g.ru or our Gem�le. I’m just adding the new routes
to the program’s Git repository, committing the changes, then
pushing the updated program to Heroku. Done.

Want to see what our updated program looks like in action? Visit
PersonalMBA.com: the site is now running Jekyll instead of
WordPress using this exact program. Using a load-testing program
called seige, my website is now able to serve over two thousand
concurrent readers without breaking a sweat. Most page requests
are delivered in eighteen to twenty-�ve milliseconds, so my site is
now fully protected from crashing due to heavy tra�c.

My �rst working web application is complete. It took me about
an hour to �gure out how to do these steps, and another hour to
�gure out how to transfer my website information and design out of
WordPress and into Jekyll.

Total time to completion: around ten hours, which includes my
research and programming concept review. Not bad!

Application #2: Codex, a Personal Notes Database

My �rst application works, and it works well. It’s simple, but that’s
a major bene�t in this case. Fewer moving parts means fewer ways
for the program to break.

Let’s look at something a bit more complex.
Remember our database discussion earlier? Basic web pages can’t

update themselves, so they can’t store information. The �rst
application only works because the �les are static: they don’t
change. Any changes to the �les are made via Jekyll, which is a
separate program. The application is fast and stable because it
doesn’t rely on a database.

What about applications that use databases? Databases are a big
part of web applications in general, so I need to understand how

http://personalmba.com/

they work. To learn how they work, I need to start working on a
project that relies on a database.

One of the applications I use on a daily basis is Backpack,33
which was developed by 37signals. The primary bene�t of Backpack
is creating “pages” that can contain pretty much anything: text,
lists, images, �les, et cetera. When you save information in a page
in Backpack, you can access it later from any computer, since all of
the information is stored in the application’s database.

I wonder: Can I create something similar myself? Worth a try …
but how do I start?

While researching Jekyll, I read an essay by Tom Preston-Werner,
the programmer who created Jekyll, called “Readme Driven
Development.”34 The gist of the essay is that contrary to the waves
of project management fads that sweep the software industry every
few years, the best way to create an application is to write a
Readme document before you do anything else.

A Readme is a �le that programmers include in the application’s
root folder alongside the code. The �le contains information on how
to set up, con�gure, and use the program.

Readme �les are important because many programs aren’t self-
explanatory. Without a bit of documentation, it’s usually very
di�cult to �gure out how to use a program. Digging into the code
to �gure it out yourself isn’t as e�cient as reading a detailed
explanation written by the original programmer.

Tom argues that it’s best to write your program’s Readme �le
�rst, before you begin coding. Most programmers code �rst, then
(maybe) write the Readme. That’s a missed opportunity: writing the
documentation �rst helps you �gure out exactly how the program
will work. The Readme can be a design tool as much as a
documentation tool.

That makes sense to me. One of the product development
techniques I learned in the process of working on The Personal MBA

was writing sales copy before creating an o�er, not after it’s done.
By �guring out what potential purchasers want and incorporating
that into your sales copy, you gain a more complete understanding
of what the product needs to be in order to attract customers. The
marketing research informs the development of the o�er itself.

I took out a notebook and wrote a list of things I wanted the
application to do, as well as qualities I wanted the application to
have:

The program is a simple reference and note-taking application.
The application is designed for a single user.
The application uses Sinatra and a database to create, save, update, and delete page
records.
The application allows the user to create pages that have fancy formatting like
bold, italics, headlines, et cetera.
The application requires a password to access it, and keeps the information in the
database as secure as possible.
The application looks nice.
The application can be easily deployed to Heroku or another similar host.

I’m going to call this application Codex, an old term for “book,”
since the application will be useful primarily for reference
information, lists, and the like.

The web programming term of art for this sort of application is
“CRUD,” which stands for Create, Read, Update, Delete. It’s worth
mentioning that these functions are basically the same thing as GET,
POST, PUT, DELETE, so building this sort of application is certainly
possible using Sinatra routes. The big di�erence is the introduction
of a database.

What sort of database options are available on Heroku? I don’t
know: back to the documentation.

By default, Heroku uses a database called Postgres.35 Every new
application is assigned a small development database by default.
That works for me, but how do I use it, and what do I use to test
the program on my own computer?

Enter DataMapper

To answer these questions, I decided to search Stack Over�ow. The
consensus is that using a library called DataMapper36 makes this
sort of development much easier.

DataMapper is a type of program called an “object relational
mapper,” usually abbreviated to ORM.37 ORMs solve a pressing
issue for programmers: databases often use their own language,
which is di�erent from the language the programmer uses to create
the application. The most common database language is called
SQL,38 but there are hundreds of others.

Let’s assume we’re a programmer for Amazon.com, and we want
to display a list of books by J. K. Rowling, author of the Harry
Potter series. Here’s what the SQL command might look like:

SELECT * FROM Book WHERE author = “J.K. Rowling” ORDER BY title;

This command retrieves all records from the Book database that
have an author �eld that contains “J.K. Rowling” and returns them
in alphabetical order by title.

Unfortunately, getting SQL or any other database query language
to play nicely with languages like Ruby can be tricky. It’s hard
enough to program in one language, let alone several at the same
time.

That’s where ORMs come in: they allow the programmer to write
code in one language, which the ORM then translates into the
database’s language. Much easier.

DataMapper, then, is a library that makes it much easier to
communicate with databases using Ruby. By default, DataMapper
provides a lot of useful features for creating, reading, updating, and
deleting database records. Since DataMapper has been around for a
while and has been tested thoroughly, in most cases it’s more
reliable than trying to write your own database code.

DataMapper is available as a gem, which is installed like this:

http://amazon.com/

$ gem install data_mapper

Since DataMapper is such a big library, it’s also possible to install
piece by piece. This is a concept called “modularity,” and it’s a
hallmark of good programming. Here’s a command that installs all
of the individual gems:

$ gem install dm-core dm-aggregates dm-constraints dm-migrations dm-
transactions dm-serializer dm-timestamps dm-validations dm-types

Instead of installing the entire library, you can install only the
parts your program will use, which is much more e�cient.

Using DataMapper

Now that DataMapper is installed, I have to �gure out how to use it
to (1) talk to a database, and (2) set up the database to store and
retrieve the information I want.

Based on Heroku’s Postgres documentation, the following
command will allow my Sinatra application to talk to the database:

DataMapper.setup(:default, ENV[‘DATABASE_URL’] || “sqlite3://#
{Dir.pwd}/database.db”)

In this case, the || is another way of saying “or.”
ENV[‘DATABASEURL’] is a variable that Heroku uses to stand for
your application’s database. If that database is not available, it will
use the second option, a database called Sqlite.39

Sqlite is installed on Mac computers by default, so it’s ready to
go. DataMapper can talk to both Postgres and Sqlite if I install these
two gems:

$ gem install dm-sqlite-adapter dm-postgres-adapter

This means that my application will use Postgres when it’s
running on Heroku, but Sqlite when it’s running on my computer. In
either case, my code will be the same, even though the databases
speak di�erent languages. That’s really cool.

Speaking of running this application on my computer … how do I
do that?

Pow!

I searched Stack Over�ow and Hacker News for information on how
to run this sort of application locally on my machine. Fortunately,
there are a few options. It appears I can install libraries (like
Foreman or Shotgun) that will run the application when I enter a
command into Terminal, or I can install a program that keeps the
program running all the time.

A program that takes the second approach is Pow,40 a “a zero-
con�guration Rack server for Mac OS X.” The site promises to make
it easy to set up local development hosting on my computer in less
than a minute. Sounds great to me!

Installing Pow takes about ten seconds: it requires a single
Terminal command to download and install the application. Once
installed, you run a command to link your program to Pow, and
Pow will allow you to run it on your machine.

There’s a Ruby gem called Powder41 that makes this process
even easier:

$ gem install powder

Once the gem is installed, you run this to install Pow:
$ powder install

Then, you go to the root directory of your application, and enter
this command:

$ powder link

That’s it. My root directory is called “codex,” so my application is
now running on my private machine at http://codex.dev, and I can
test my work.

If I make a change, this command restarts the program:

http://codex.dev/

$ powder restart

Easy. I’m now ready to start building. I set aside an hour and a
half every evening to code, and I’ll keep going until it’s done.

Code, Test, Revise

At this point, I’m going to describe what I’m doing versus how I’m
doing it. You can see the full code at
https://github.com/�rst20hours/codex if you want to follow along.

Here’s what I want the application to look like when I’m done:

You’ll notice this design has three parts: a top navigation bar, a
main content area, and a sidebar. I put together this basic design
using Bootstrap,42 which was created by Mark Otto and Jacob
Thornton, both developers at Twitter.

Instead of creating a web design from scratch, Bootstrap is a
library of prewritten HTML and CSS that’s free to use. Using
Bootstrap saves a ton of time: you can put together a basic

https://github.com/first20hours/codex

prototype of what you want an application to look like in minutes
instead of days.

The basic unit of this application is a “Page,” which displays a
record stored in the database. The Page information goes in the
main content area. There’s a button that leads to a screen that lists
all Pages in the database, and two buttons at the bottom. The �rst
button allows you to edit the current Page, and the second lets you
delete it.

The sidebar contains three main features. At the top, there’s a
form that allows you to create a new Page, which requires a title.
Second, there’s a list of Pages the user has added to the sidebar,
which acts as a quick reference section. Third, there’s a formatting
reference, which helps the user remember how to use common
formatting features.

The navigation bar at the top is pretty simple. It contains a link to
the home page, as well as a secondary link to the “List all pages”
screen. I can add additional items to the navigation bar later if I
like, but that’s all I really need for now.

Every web application has a home page, so I need to decide what
I want to have on that page. In this case, I just want to display the
Home record in the database.

So what’s in a Page? Since each Page is a database record, and
records have �elds that contain the actual information, I need to tell
DataMapper which �elds to set up. Here’s the code:

class Page
include DataMapper::Resource
property :id, Serial
property :title, String
property :content, Text
property :lastupdated, DateTime
end

DataMapper.�nalize

This code uses DataMapper to create a new type of object called a
Page. Ruby can now use a Page like any other object, and I can

create and use methods that build, modify, and delete Pages. When
I make a change to a Page, that change is stored in the database via
DataMapper.

The Datamapper.�nalize command tells the application to set up
these �elds in the actual database if they don’t already exist.

Now that I have the database set up, it’s time to �gure out which
routes Sinatra should expect to serve. Here’s my list, based on what
I know so far:

Show home page
get ‘/’

Creates new note from “new page” form
post ‘/’

Displays requested note
get ‘/:url/’

Edits requested note
get ‘/:url/edit’

Saves user edits to note
post ‘/:url/edit’

Deletes speci�ed note
delete ‘/:url/’

List all pages in database
get ‘/all/’

Error handling
not_found
error

That’s a pretty good list. My application will revolve around what
commands I create for each route.

Slugs, Slugs Everywhere!

Remember when I mentioned that databases are a bit like a stack of
magic index cards, and you can search them any way you want? We
need a way to search for speci�c page records, which is why you

see :url in these routes. The content of the url parameter will tell
the database which record to retrieve.

We could use the page title as the parameter, but there’s a
problem with that: web browsers don’t like things like spaces,
capital letters, and special characters (like $ and %) in web
addresses. Page titles may very well include those things, so you
need to have a way to strip them out.

A string that uniquely identi�es a website page is called a slug.43
My page slug will be based on the page title, with the following
rules to make it web-address friendly:

1. All characters will be lowercase.
2. No special characters—alphanumeric only.
3. No spaces—all spaces should be replaced with a dash.

The way to do this is by creating a method that accepts the page
title, then converts it to slug format. The tricky substitutions are
taken care of by a type of programming called regular expressions,
which transform or �nd text within strings based on given rules.44

Regular expressions can be very arcane, but this is a common use,
so I was able to �nd a boilerplate example. Here’s my method:

Converts page name into post slug
def slugify(content)

content.downcase.gsub(/ /, ‘-’).gsub(/[^a-z0-9-]/, “).squeeze(‘-’)
end

Now, I can use the slugify method to transform a string like
“Page Title” into “page-title,” making it appropriate to use in a web
address.

In addition, if we store the slug alongside the page’s title, we can
use it to retrieve the page record using the :url parameter.

I added this �eld to the DataMapper class:
property :slug, String

Now, whenever we create a page, we can “slugify” the page’s
title, store it in the database, and use it to show the page again
when we want to retrieve it. That’s how the application will know
which page to show.

Creating Pages

I start by working down my list of necessary routes. The “home”
route is easy: I redirect it to the /home/ slug, since I want the home
page to show the home record.

The “create Page” route is linked to the little form at the top of
the sidebar. The user enters the page title in the form, then clicks
the button. The system captures the page title, slugi�es it, then
saves the title, slug, and time of creation in the database. It then
sends a GET request containing the slug, displaying the new page.

There’s a tiny detail in the “create Page” route that’s very
important: what if the Page already exists? I don’t want to
overwrite the Page if it already contains data. Accidental data loss is
unacceptable.

Fortunately, DataMapper solves this particular issue with the
built-in method .�rst_or_create. Before creating the Page,
DataMapper will check whether it already exists. If the page exists,
DataMapper won’t overwrite it, and Sinatra will redirect the
browser to the existing page instead. Problem solved.

The “display Page” route reads the slug in the URL, retrieves the
record from the database, then displays the information in the main
content area. Later, I’ll add some fancy formatting, but for now, I
just want it to work.

Editing Pages

Editing a Page involves two separate routes. The �rst route GETs
the Page that the user wants to edit, then displays the contents of
the page record in forms the user can edit.

To display these pages, the application relies on a template syntax
called ERB, which is basically HTML + Ruby commands. ERB allows
programmers to write HTML that includes elements that can
change. Since ERB processes the page before it’s displayed to the
user, it can change the text on the page every time the page is
loaded, based on the Ruby commands in the template.

The Save button on the editing screen sends a POST request to the
application that updates the Page record.

Deleting Pages

Deleting Pages requires some caution: remember, accidental data
loss is unacceptable. If you’re going to delete a Page, you want to
be absolutely certain the user actually intends to delete that Page.

The wrong way to do this would be to link a delete button
directly to a DELETE route in the application. That approach would
delete the Page even if the user clicked the button accidentally.

A better strategy is to use a two-phase process. Clicking the
Delete button on a page takes the user to a con�rmation screen that
displays the title of the Page the user wants to delete. If the user
wants to proceed, they can click on a con�rmation button that sends
the DELETE request. If the user clicked the Delete button by
accident, they can hit the Cancel or the Back button on their
browser.

Listing All Pages

“List all Pages” redirects the user to the /all/ slug, which is di�erent
from regular pages.

Instead of retrieving a single record, DataMapper retrieves all of
the Page records in the database. The ERB template for the Page
contains a conditional loop that creates a list item for every Page
retrieved. Each item contains the title of the Page, which is

displayed as a link that contains that Page’s associated slug.
Clicking on the link takes the user to the individual Page record.

Launching the Application the First Time

I have the basic features in place, but I’m having a problem: when I
test the application by visiting the home page, I immediately get an
error message. The program is trying to �nd the Home record in the
database, but it doesn’t exist, because I just started the application!

The solution for this is to create a “one-time administrative
process” using a program called Rake. Rake programs are stored in
a Rake�le, which is located in the root folder of the application.

Rake�les work just like regular Ruby applications, with one
exception: they exist outside of your core program, and you have to
run the commands manually.

That makes Rake very useful for doing things like adding default
information to the database before we o�cially run the actual
program. I copy the important bits of application.rb into the
Rake�le, then create a command that creates a new “Home” Page in
the database. Then, all I need to do is run this command once:

$ rake setup

Rake creates the “Home” Page record, and my application stops
showing errors on startup. When I push this application to Heroku,
I’ll run the Rake command remotely to set up the database before I
try to use the application.

At this point, we have all of the major features in place. Now, it’s
time to add some fun things.

Adding Sidebar Support

I just realized that I didn’t include a way to add pages to the
sidebar, like I originally intended. This sort of feature requires a

Boolean, since it only has two values: the page is supposed to be
displayed in the sidebar, or it’s not.

I added this to the DataMapper class:
property :sidebar, Boolean, :default => false

I also add a checkbox to the “edit” screen alongside “Include in
sidebar?” which I link to the sidebar �eld in the database. I then
write a simple loop to �nd records in the database where :sidebar =
true, then display them as a list, similar to the “List all” page.

I restart the application, edit a record, and the whole application
crashes. Yikes!

I try and try to �gure out what’s going wrong, but I’m having no
luck. After combing the DataMapper documentation and searching
Stack Over�ow, I �nd that using Boolean variables in this way
doesn’t mesh well with HTML forms. Another approach is needed:

property :sidebar, Enum[:yes, :no], :default => :no

This is another way to do basically the same thing. Enum, which
stands for “enumerate,” creates a list of options, and the form sets
which option to save in the database.

Adding Markdown Support

Now I want to make sure my pages can contain fancy formatting,
like italics, bold text, and headlines.

I’ve chosen Markdown as the formatting syntax, which is a
popular and very useful little markup language created by John
Gruber.45 I’m already familiar with how Markdown works as a
user, since a few applications I use on my computer include it. I’ll
have to �gure out how to make my program understand it, though.

A bit of searching tells me there are several Markdown gems
available. I choose the rdiscount library, which I include in
application.rb:

require ‘rdiscount’

Rdiscount transforms text that’s written in Markdown format into
HTML: the user’s web browser then displays that text with the
proper formatting. Markdown �les aren’t anything special in
themselves: they’re just text �les that are written in a certain way.

That means that I don’t need to transform my page information
to Markdown before I add it to the database. It’s just text, after all.
All I need to do is call rdiscount whenever I want to show the fancy
formatted text.

Here’s the command that does the work, which I added to the
ERB templates responsible for showing pages:

<% markdown(@page.content) %>

The method sucks in the Page content �eld, transforms it to
HTML, then displays the end result to the user. Easy.

Adding Security

What about login information? If I put this application up on
Heroku without requiring a username and password, anyone will be
able to see what I’ve stored in the database.

As it turns out, modern web browsers support a security protocol
called HTTP Basic Authentication,46 which is a simple way to
require the user to enter a username and password before they can
proceed. If the user can’t supply the access credentials, they’re
redirected to an error page.

Here’s the code that enables basic authentication in Sinatra:
use Rack::Auth::Basic, “Restricted Area” do |username, password|
[username, password] == [ENV[‘ADMIN_USER’], ENV[‘ADMIN_PASS’]]

end

In this case, I’m storing the actual username and password in
Heroku as environment variables, which I can set with a Terminal
command. That allows me to use the same code for di�erent
applications, as well as show you this code without also giving you
my passwords!

This is also a good example of why it’s important to know that
Sinatra is built on top of Rack. There are many libraries like
Rack::Auth::Basic available, and I can use any of them with Sinatra.
The less I have to reinvent the wheel, the better.

There’s one more piece of security I want to add: encryption. I’m
going to add SSL encryption—the same type of security banks use to
ensure their online banking sessions are private—to my application
with the rack-ssl-enforcer gem:

require ‘rack-ssl-enforcer’
use Rack::SslEnforcer

This library forces the web browser to use a secure SSL
connection to access the site. Heroku allows applications hosting on
Heroku domains to use SSL by default, so there’s nothing more to
set up.47

Adding “Flash” Messages

There’s one last feature I’d like to add: I’ve seen websites that show
you little messages like “Your page has been
created/edited/deleted” after you do something. How do you do
that?

I poke around a bit, and �nd a library called sinatra-�ash that
handles this.48 These messages are called “�ash” messages, and they
work by storing a little bit of text in the user’s browser cookie
before going to the next page. When the next page loads, the
application reads the cookie and displays the message to the user.

I added the library to the Gem�le and application.rb, set the
messages I wanted to show in the appropriate routes, then added a
little code to actually display those messages in my ERB templates,
and I was done. My app is now complete.

Code Complete

Here’s the beginning of the �nal Codex Readme �le:
Codex is a simple single-user reference web application written in Ruby. Codex
uses Sinatra and DataMapper to create, save, update, and delete page records
from a simple Postgres database. The application is ready for immediate
deployment on Heroku.

Markdown formatting is enabled for all pages, which makes it easy to write
complex pages with simple markup. HTTP authentication and forced SSL for all
tra�c keeps your information secure. Bootstrap styling makes your pages look
clean and attractive.

The Readme continues with detailed instructions on how to set up
the application on Heroku. “Readme Driven Development” was a
very good approach.

In total, Codex took me ten hours to build. That brings my total
investment in learning programming to twenty hours. (It took me
longer to write this chapter than to write the actual application.)

After creating Codex, I attended a local Ruby programmers
meetup, and volunteered to explain how the program worked. The
feedback was very positive, and I was complimented on how clean,
compact, and understandable the code was. One of the participants
remarked that the code quality was better than projects he’d seen
that were written by professional programmers.

Mission accomplished.

Rage Against the Machine

I want to clarify something: the process I described sounds very
linear and straightforward. That’s because, up to now, I’ve been
describing what worked, not what didn’t.
Coding a useful, working web application is a bit like putting

together a puzzle with a few extra challenges: you don’t know
which pieces exist, you have to create some of the pieces yourself,
and if you make a mistake, the puzzle explodes.

Here’s what my programming process actually looked like: I’d
come up with an idea for how I thought part of the program would
work. I wrote some code, tested it, and it broke the program. I’d

try to modify it. Sometimes my change would �x the program,
sometimes it wouldn’t, and sometimes it would break even more
things. If I got seriously stuck, I’d search for the error message or
library on Stack Over�ow or Google.

When you’re still learning what everything does, your application
is broken way more often than it’s working. You also learn about
the value of things like version control, which lets you roll back
your code to a previous working version.

Remember when I mentioned I didn’t really grok what git was
for? It’s for this: if you’re editing �les and something breaks, you
may not be able to �nd what’s broken. Rolling back to a previous
version that works is a godsend and a relief. If you can’t, you panic.

Around the point where I started coding the Add to Sidebar
feature, I broke the application. I tried to �nd what I did wrong, but
I couldn’t �gure it out. If I had hair on my head, I would’ve torn it
out.

That’s when you learn the value of git branch and git merge: you
can create experimental copies of your program, then make your
modi�cations. If your code works, you can merge it back into the
master copy. If you screw things up, you can delete your
experimental branch without losing all of your previous work.

Programming is hard, and there are millions of ways to screw it
up. The computer is unforgiving, and doesn’t su�er ill-formed
commands. Likewise, it’s easy to overlook little details that produce
unexpected results. I was having a terrible time with a bug that was
saving a bunch of blank records to the database, which showed up
on the “List all” page.

Every time I viewed the page, more phantom pages would appear
in the list, and I couldn’t �gure out where they were coming from.
It ended up being a bug in the “list all” route: I was using an
incorrect command to retrieve the records from the database.

Every time I broke something, I learned something. That’s one of
the hidden bene�ts of programming. The computer is the fastest of

all feedback loops. If you do something wrong, you know it right
away. If you do it right, you get to see the results of your work
immediately. If you can avoid the impulse to throw your computer
across the room, the instant feedback can make programming quite
addictive.

At the beginning of this experiment, I couldn’t program at all.
Now, I can. All it took was spending the time necessary to beat
some code into submission, and pushing through or doing a little
research whenever I got stuck.

What did I gain for my e�orts? A ton. I learned what
programming is, what it looks like, and why it’s useful. I learned
how to create real working web applications in Ruby from scratch,
then push them to production servers. I learned the basics of
Sinatra, Heroku, Jekyll, DataMapper, Rake, and other versatile
tools I can use to create useful new applications. I learned how to
troubleshoot errors and �nd bugs, then �x them.

Reviewing the Method

Let’s review the core of the method I used to learn programming:

I spent some time learning what programming and web applications are in general,
then deconstructed these skills into smaller subskills that are easier to understand
and practice.
I set my target performance level by choosing two speci�c projects I wanted to
create, then de�ned what those projects would look like when �nished.
I deconstructed those projects into smaller substeps then identi�ed which substeps
seemed most important.
I made sure I had the tools I needed to work (like the latest version of Ruby), and
that I was able to �nd and use any additional tools I needed.
I found a few reliable sources of programming information, but I skipped canned
tutorials in favor of jumping in and writing the actual programs.
I worked on the most important substeps �rst, like �guring out how to test
programs on my computer, push the �nished application to production, et cetera.
I used reference examples to get started and build con�dence, then tested various
approaches to �gure out how to program the features I wanted.
When I made an error, the program crashed and gave me an error message,
creating a fast feedback loop.

After getting an error, I experimented with several ways to �x it. If I couldn’t �x
the problem myself, I searched for help.
I kept using the build/test/�x approach until my programs were complete.

Total time elapsed: approximately twenty hours. Ten of those
hours were research, and the remaining ten were programming the
two applications, which are now �nished and in production.

Where I’m Going from Here

I’ve continued to program web applications since completing these
basic projects, focusing on programs that make running my business
easier.

I’m proud to say that my entire business now runs on software
I’ve created myself. My applications are capable of charging credit
cards, setting up subscriptions, sending e-mail, and managing
website access for my customers. By learning to code, I now have
my own little robot army that’s programmed to do my bidding.

How long did it take to write all of these programs? About ninety
hours in total, including the twenty I’ve detailed in this chapter.

Here’s an added bene�t: whenever I �nd an area of my business
that’s repetitive or frustrating, I start thinking in code. How would
a program that solves this problem work? More often than not,
there’s a way to systematize the process in a way that makes my
day-to-day life easier.

I’m also picking up new tricks, like customizing my computer to
make programming faster. I’m learning keyboard shortcuts in my
text editor to save time, and I’ve upgraded Terminal to iTerm2 and
Z-Shell to make coding a bit easier.

I’m still practicing, and I’m not an expert by any standard. I have
to research everything, and it takes me a while to solve problems,
errors, and bugs. It’s often frustrating.

Still, I’m creating programs that solve real problems in a
straightforward, reliable way. That’s what really counts.

I �ght the computer, and I win.

6

Touch Typing

Lesson: Old Habits Don’t Necessarily Die Hard

Anything worth doing well is worth doing poorly at �rst.
—RAY CONGDON

For supplementary images, video, and commentary about this chapter, visit
http://first20hours.com/typing.

Up to this point, I’ve been learning new skills in areas where I have
little previous experience. That lack of experience is certainly a
barrier at �rst, but at least my mind isn’t actively interfering with
the learning process.

What happens when you’re practicing something new and your
brain is rebelling at the same time?

There are certainly dramatic examples of reacquiring a skill. Tiger
Woods has famously retrained his already high-performing golf
swing three times.1 Sometimes it’s worth learning how to do
something important in a new and better way, even if it’s at the
cost of short-term ine�ciency or frustration.

The pace of modern technology makes relearning very common:
What happens if a software program you rely on to do your job
changes, or a new program becomes the most e�cient way to
complete a task? What if you get a new job that requires working
with new tools? Relearning skills quickly is often just as important
as learning something new.

http://first20hours.com/typing

I’m curious: What does it feel like to retrain yourself to do
something that really matters?

I started listing things I already knew how to do, then combed the
list looking for skills that (1) I was already good at doing, and (2)
that had several methods for accomplishing the same result. It
didn’t take long to �nd a promising candidate.

The skill? Touch typing.

A Life Behind the Keyboard

According to David Allen, author of the productivity uber–bestseller
Getting Things Done (2002), if your work requires using any sort of
computer, learning how to touch-type is the single most signi�cant
thing you can do to improve your productivity.

The critical threshold seems to be about sixty words per minute
(abbreviated WPM). If you can’t touch-type at least sixty WPM with
a low error rate, you’re seriously crippling your ability to do
productive work. The less e�ort you need to put into typing, the
more time and energy you have to do higher-value tasks.

I’ve been touch typing for at least seventeen years, probably
longer. In school, every student was required to take a typing
course in seventh grade, and I remember being bored. I already
knew how to touch-type, so I �nished the assignments in a few
minutes, then spent the rest of the class time �guring out how to
make the word processor spit out strange-looking characters, like
pilcrows (¶), section marks (§), and interrobangs (!).

I learned how to touch-type mostly by spending a lot of time
working with computers in my spare time. My typing practice was
ambient, not deliberate: I didn’t consciously work on improving my
speed or accuracy. I just used the computer, and in the process, I
learned how to type.

That’s not to say my technique was great. My hands �ew all over
the keyboard instead of spending most of the time on the home row,

the keys in the middle of the keyboard. My method wasn’t textbook
correct, but it got the job done, which was all I cared about.

Even though my typing form isn’t great, it’s functional. In my
line of work, I’m at the computer a lot, and my typing speed and
accuracy get the job done.

Every now and again, however, I come across an article about
alternative keyboard layouts: arrangements of keys that are
di�erent from QWERTY, the so-called universal default layout that
graces the vast majority of English-language keyboards produced
each year:2

QWERTY, the argument goes, is grossly ine�cient—a horrible
design. There are other ways to arrange the keys on a keyboard that
help the user type more quickly, accurately, and with less e�ort.
Cumulative e�ort is a very big deal: repetitive stress injury (RSI)

and carpal tunnel syndrome are common hand and wrist disorders
that can be caused or exacerbated by typing. Although I haven’t
experienced noticeable symptoms yet, I have several close friends
who have, and it’s not fun. I want to avoid dealing with these
disorders if I can.

I’m planning on writing and programming for many years to
come, and unless speech recognition or thought-to-text becomes the
primary method of computer use, I’ll be typing for the foreseeable
future. It’s probably in my best interest to learn how to type in the

most e�cient way possible, even if that involves short-term
confusion or discomfort.

Goodbye QWERTY: I’m going to relearn how to touch-type.

How the QWERTY Layout Became the “Universal” Standard

Contrary to popular belief, the QWERTY keyboard format wasn’t
designed to slow typists down: it was a solution to a mechanical
engineering problem.

In the olden days, before word processors and computers,
mechanical typewriters made characters appear on pages by
swinging a small metal key, called a typebar, toward a piece of
paper, which was wrapped tightly around a cylinder. An inked
ribbon lay between the paper and the key. The key struck the
ribbon, which made contact with the paper, leaving a character on
the page. The “Return” key rotated the cylinder, moving the paper
up and allowing the typist to continue to type on a new line.
C. L. Sholes, who is credited with the invention of the QWERTY

typewriter layout, built his �rst prototype in 1868. Sholes wasn’t
the �rst person to create a typewriter: there were at least �fty-one
other inventors who tried before he did, and Sholes studied their
work, incorporating many of their features into his design.3

The keys on Sholes’s �rst prototype were arranged in alphabetical
order, which made sense. At the time, no one imagined that people
would (or could) learn to touch-type with all ten �ngers. Putting the
keys in alphabetical order ensured that untrained users could �nd
the appropriate letters as they pecked with two index �ngers.

There was a major problem with the prototype, however: the
typebars had a nasty habit of sticking together when adjacent letters
were pressed in quick succession. Consider the most commonly used
letters in English words: the vowels AOEUI, and the consonants
DHTNS. On an alphabetical mechanical keyboard, S and T sit right
next to each other. If one typebar was going up while the other was

going down, they would jam, requiring the typist to stop and
untangle the typebars manually.

To correct this chronic annoyance, Sholes enlisted the help of
Amos Densmore, a teacher. Densmore conducted a quick-and-dirty
study of letter frequency in the English language, which Sholes then
used to put common letter combinations, like TH, on opposite sides
of the bank of typebars, preventing collisions.

This strategy didn’t completely solve the issue, but it improved it
so much that Sholes �led for a patent on the design in 1872.4 E.
Remington & Sons, a company that was then primarily known for
manufacturing �rearms, purchased Sholes’s patent in 1873.

After making a few additional mechanical improvements, like
adding a Shift key to allow typists to switch between capital and
lowercase letters, Remington began mass-producing typewriters
that featured the QWERTY layout, with the intent of selling them to
the business market, in 1874.

Remington wasn’t the only company selling typewriters. Others,
like Hammond and Blickensderfer, were o�ering competing devices,
which each had their own distinct keyboard layouts.

At the time, businesses relied primarily on written memos for
records and correspondence. Typewriters could potentially save a
lot of manual e�ort, but only if the operators knew how to use
them. In order to land a sale, companies had to overcome the
necessity of training typists to use the odd contraptions.

That led to an interesting market dynamic: the typewriter
companies recruited and trained typists themselves, e�ectively
operating placement agencies. If a businessperson wanted to hire
someone who could type, they called Remington, who would sell
the business both the typewriter and the services of someone who
could use it.

Over time, as more and more businesses adopted typewriters,
QWERTY began to emerge as a standard. There was no de�ning

moment, no law or bureaucratic standards-setting committee, just a
subtle market movement toward a single good-enough solution.

Businesses needed typists and typewriters; Remington was good
at supplying both. And when a business needed a new typewriter or
a new typist, it was most e�cient to buy a new QWERTY machine
and hire a typist who knew QWERTY. Over a period of sixty years,
QWERTY became the de facto standard, and competing layouts
slowly disappeared. As the decades passed, QWERTY quietly took
over the world.

Competition Appears: Dvorak

In 1932, August Dvorak, a professor at the University of
Washington, was given a $130,000 grant by the Carnegie
Commission for Education to research keyboard design. One of the
motivating factors of this research was the realization that QWERTY
was designed to solve a mechanical engineering problem that no
longer really existed. Was there a better way to design a keyboard?

Four years later, in 1936, Dvorak �led a patent for the Dvorak
Simpli�ed Keyboard, which he claimed was far superior to other
layouts. The basis for this claim was simple: Dvorak’s layout placed
the most commonly used characters directly under the user’s �ngers
on the home row.

The most common consonants were placed on the right side of the
home row, and all �ve vowels were placed on the left side. This

split between vowels and consonants balanced the typing load
evenly between a typist’s left and right hands, theoretically
reducing fatigue and improving speed.

Dvorak also claimed the layout was easier to learn, and pursued
research studies with organizations that trained a signi�cant number
of typists, most notably, those in the U.S. military. Outcomes were
mixed: since Dr. Dvorak ran these studies himself, many of the
favorable results were cast into doubt, given his obvious �nancial
stake in the results.

An independent controlled study by the General Services
Admission, which was responsible for training U.S. government
typists, found that it took QWERTY trained typists over one
hundred hours to regain their previous typing speed if they
retrained on Dvorak. That was too long. Hence, the study
recommended standardizing government typists on QWERTY.
Typewriter manufacturers and businesses followed suit.

Dvorak, as a layout, continued to exist as a fringe option, but as a
standard, it was a failure. Even though it had many valid claims to
e�ciency over QWERTY, it wasn’t able to replace the status quo.
Dvorak languished for decades, a very distant number two.

A New Challenger Appears: Colemak

QWERTY and Dvorak aren’t the only two English keyboard layouts
in existence. Although the vast majority of typists learn QWERTY,
inventors and hobbyists have pursued innovations in keyboard
design for decades. Most of these alternative layouts never gain
wide traction, but in 2006, a brand new keyboard layout began to
attract the attention of adventurous typists, thanks in large part to
the Internet.

Here’s the story. Shai Coleman, a computer programmer, decided
to try his hand at keyboard design. His goal was simple: to create a

layout that had the relative e�ciency of Dvorak, but was easier to
learn.

One of the major problems with Dvorak was that it changed
everything: every single letter key is di�erent in Dvorak versus
QWERTY. If you originally learned how to type on QWERTY, the
magnitude of the change makes learning Dvorak an absolute
nightmare.

Even worse, now that computers are the primary typing tools, it’s
common to rely on keyboard shortcuts to accomplish repetitive
tasks, like saving a �le, cutting and pasting text, et cetera. If you’re
used to certain keyboard combinations working in a certain way,
Dvorak is particularly jarring: not only do all of the letters move,
but all of the shortcuts are di�erent as well.
Coleman’s strategy was to combine computer analysis of a very

large data-set of English documents with the idea of preserving as
many keys as possible to keep the same keyboard shortcuts. The left
side of the keyboard, as well as most of the bottom row, was left
mostly as is. Only the most signi�cant keys were changed.
Coleman’s algorithm recommended most of the changes, leaving
only a few ambiguous keys that required a judgment call.

In the end, Coleman’s new layout, which he named Colemak,
changed seventeen keys compared to the standard QWERTY layout.
Based on the numbers, it was way more e�cient than QWERTY, and
slightly more e�cient than Dvorak. Even more promising, since
Colemak switched fewer keys, it was likely to be easier for
QWERTY users to learn.
Coleman created a website, colemak.com, that contained details

about the new layout, as well as instructions about how to install
and learn it. Compared to Dvorak’s expensive e�orts to popularize
his layout in face-to-face meetings with large organizations, the
Internet made spreading the word of Colemak’s existence
downright cheap.

http://colemak.com/

As a result, Colemak is now the third most popular English
keyboard layout, behind QWERTY and Dvorak. The layout now
comes bundled in most new computer operating systems by default
and has thousands of users all over the world. Not bad at all for a
layout developed by a single hobbyist that’s existed less than a
decade.

When in Doubt, Test

With all of these alternative keyboard layouts �ying around, how
do you decide which one is best?

Simple: you test them.
Modern programming technology has made it much easier to

collect hard data on various approaches to keyboard design. Instead
of testing and collecting data manually, it’s possible to use a
program that analyzes keyboard layouts for you. One such program
is called carpalx,5 the creation of Martin Krzywinski, a programmer
who works for the British Columbia Genome Sciences Centre.
Carpalx is designed to “perform a stochastic simulation to �nd a

layout that minimizes the e�ort score for a given set of model
parameters.” In other words, carpalx can automatically test the
e�ciency of various keyboard layouts by running them against
sample texts.

Kyrzwinski used carpalx to design his own layout, but he also
used it to compare Colemak with QWERTY and Dvorak, producing a
very large and thorough set of comparative data. Here’s what he
found:6

QWERTY comes out as the big loser here, with a huge increase over Colemak in
the base e�ort (+193 percent), a large stroke path increase (+36 percent) and a
signi�cant penalty increase (+16 percent). Dvorak is already an improvement
over QWERTY, so the di�erence between it and Colemak is smaller.
Colemak makes even greater use of the home row (74 percent) than Dvorak (71

percent). This leaves QWERTY’s 34 percent far behind. And Colemak’s bottom
row use is low at 9 percent, like Dvorak.

Colemak is more balanced in hand use, with a 6 percent preference for the
right hand (Dvorak has 14 percent for the right and QWERTY has 15 percent for
the left).
Colemak is very good at maintaining hand alternation for both hands. Both

Colemak and Dvorak make greater use of the pinkie. Colemak uses the pinkie 16
percent of the time (18 percent for Dvorak and 10 percent for QWERTY). Colemak
does a good job at loading the stronger �ngers (index and middle) and uses them
67 percent of the time. This is better than Dvorak, which uses these �ngers 60
percent of the time, but not as good as QWERTY, which uses them 69 percent of
the time.

Based on Krzywinski’s data, it takes almost twice as much
physical e�ort to type on a QWERTY keyboard, compared to a
Colemak keyboard. Colemak also beats Dvorak slightly, which is
impressive, given Colemak only changes seventeen keys on the
standard QWERTY layout, versus Dvorak’s twenty-four.

Given the data, I’m going to learn Colemak. I like that it saves
e�ort without completely rearranging common keyboard shortcuts,
which I use a lot.

So what do I do next?

What Does Colemak Look Like?

Here’s a diagram of what the Colemak keyboard layout looks like:7

In addition to changing the position of the most frequently used
character keys, Colemak remaps the Caps Lock key as a second
Delete key. This change is one of the biggest innovations in
Colemak. No one (aside from Internet trolls) uses the Caps Lock key

on a regular basis, but it occupies prime real estate: it’s an easy
reach for the left-hand pinkie �nger, and it’s right next door to the
A key on the home row.
Changing Caps Lock to Delete allows Colemak typists to correct

errors without moving their right hand o� the home row to hit the
Delete key on the far top right of the keyboard, saving a lot of
e�ort. That single change results in a 15- to 20-percent reduction of
�nger distance compared with QWERTY. The more mistakes you
make that you correct with your left pinkie, the more e�cient
Colemak becomes.

How Do You Turn On Colemak Mode?

With computers, changing keyboard layouts is easy: it’s just a
matter of telling the computer to use a di�erent layout �le, the
same mechanism used to switch to a keyboard in another language.
This setting is usually located in the computer’s primary “Systems
and Preferences” panel. Colemak is included in the Mac OS X
operating system as of version 10.5, so there’s nothing to install.8

In addition, some keyboards, like the TypeMatrix 2030,9 support
Colemak in the hardware itself. Instead of con�guring the computer
to recognize Colemak, the keyboard translates Colemak keystrokes
into QWERTY bits, so the correct characters show up on the screen.
As a result, you can type in Colemak without changing anything in
the computer at all, provided you’re willing to spend around one
hundred dollars for a nice ergonomic keyboard.10
Changing the settings in the computer is the easy part, but that’s

not the only barrier. Since most English-language keyboards come
with QWERTY by default, switching to Colemak means that the
letters printed on the keys won’t match the characters that will
appear on the screen. If you rely on typing odd strings of
characters, like complex passwords, that’s a recipe for confusion.
How do you �nd a physical Colemak keyboard?

There are two general approaches: you can buy a blank keyboard,
or convert a QWERTY keyboard into Colemak format.

Some keyboards, like the TypeMatrix 2030, are available in
Colemak versions, which is an easy solution if you’re willing to buy
a new keyboard. That didn’t help me though: I type on a laptop, so
the keyboard is built in.

Modifying My Machine

Fortunately, it’s easy to pop the keys o� of Apple keyboards and
rearrange them without damaging the computer. Since Apple uses
�at “Chiclet” style keys that all have the same dimensions,
converting the keyboard to Colemak was a �ve-minute project.11

Using a small slotted screwdriver, I gently lifted the top right side
of each key, inserted the tip of the screwdriver, then moved it down
along the right edge of the key. Once the screwdriver gets to the
middle of the key, the key pops o� the keyboard’s built-in “scissor”
mechanism, which makes the key bounce back after it’s pressed.

Once you get the hang of it, it’s very easy to pop o� the keys that
need to be changed. I then used a Colemak layout diagram to put

the keys back on the keyboard in the correct places. All it took was
a gentle press, and the keys clicked permanently into place.

It’s a simple procedure, but it’s worth noting that this likely voids
the warranty on my laptop. For safety’s sake, I tested this with a
spare Apple wireless keyboard �rst, then changed the keys on my
MacBook Air once I was comfortable with the process.

Now I have a native Colemak keyboard on my laptop. How cool
is that?

This is an example of spending a little time changing the
environment to support practice. Now that my keyboard is in
Colemak, it will be easier to make the switch. If I have trouble
remembering which key is which, I can look if necessary.

How Fast Do I Type?

Now that my keyboard is ready, I’m closer to making the big
switch. Before I go ahead, however, I want to get an idea of how
fast I currently type, which will help me determine my target
performance level.

In this case, my target performance level is simple: I want to be
able to regain my QWERTY typing speed on Colemak as quickly as
possible. I’m not looking to exceed it, since typing speed isn’t a
limiting factor in my work. I just want to be able to type as well as
I’m used to with less e�ort.

The only piece of information I really need before my switch is
my current typing speed, so I searched for a basic online typing
speed test.12

The test is straightforward: when you push the Start button, the
program shows you one hundred random words from an old
book.13 Your job is to type the sample as fast as you can, with as
few errors as possible. When you’re done, you hit the Stop button,
and the program gives you your typing speed and error rate.

My plan is to take the test �rst using QWERTY, then repeat the
test after I switch to Colemak, just to see where I’m starting from. I
hit the Start button, and begin typing.

When I was �nished, I hit the Stop button and received my
results: sixty-one WPM, 100 percent accuracy, zero errors. Not bad:
I type right at the threshold David Allen recommends. I’m not a
speed demon, but I can type well enough to get the job done.

I have everything I need: I know how fast I type, my keyboard is
in Colemak mode, and I know how to enable the layout in the
operating system. There’s nothing left for me to prepare.

This is it. Am I ready to leave QWERTY behind?

Flipping the Switch

It’s now or never. I switch my computer into Colemak mode, then
close the settings panel. From now on, I won’t be able to type
anything in QWERTY until I’ve completed the experiment.

My web browser still has the typing test loaded. I start the timer
with my mouse and begin typing.

Here’s my �rst impression: #%&@.
At the risk of sounding melodramatic, it feels like part of my brain

has been removed.
I’m used to words �owing e�ortlessly from my brain into the

computer. Now, I don’t know where any of the keys are. I have to
hunt for most of them, even the keys that haven’t changed from
QWERTY, which doesn’t make any sense.

I see something on the screen, and my �ngers move
unconsciously, so I’m typing gibberish, which I then have to erase.
It takes me several seconds to type simple words, and I’m
concerned that I’m wearing out the Delete key.

Each word is a new struggle. I look up at the clock, and it’s taken
me several full minutes to type two sentences. I’m not even halfway

done. I seriously consider quitting, but choose to press on. As the
minutes pass, I almost quit at least ten times.

In the end, it took me almost twenty minutes to type one hundred
words. My new typing speed: �ve words per minute.

Kill me now.
I write for a living, and I just learned how to program. Now, I

can’t do either. How will I answer e-mails? How will I work? What
have I done?

I Have Seen the Enemy, and It Is Me

This is the primary barrier that prevents most people from learning
a new keyboard layout. The technical aspects of switching are
trivial compared to the emotional aspects.

When you’re used to a certain level of speed or ease in
completing a task, anything less seems awful. This is particularly
true with typing: if you’re used to typing being e�ortless, and it
suddenly requires a lot of e�ort, continuing to press on feels
downright painful. What’s even worse is the knowledge that if you
just went back to the way you used to do things, everything would
be better again.

Our minds don’t help us here: our brains have a stubborn
tendency to assume that what we’re experiencing in the moment
will continue to be true in the future. Right now, my mind is
freaking out. If I’m only able to type �ve words per minute, I won’t
ever be able to work again! My career will be over! My family will
starve!

That’s not true of course, but it feels true in that moment. That
emotional experience is the largest barrier to learning.

I close the computer and take out a notebook and pen. I need a
plan to get up to functional typing speed on Colemak, and I need it
now.

Remapping My Brain

The �rst and most pressing order of business is that I don’t know
where the new keys are located. Sure, I have a printed reference
sheet, and the physical keys on the keyboard are in Colemak
format, but my brain isn’t currently capable of mapping the desire
to type a letter to a speci�c �nger movement.

Helping my brain map the new layout into motor skills is my �rst
priority. I need to be functional as quickly as possible.

Fortunately, people have been learning to touch-type for decades
now, so there are well-developed commercial tools that can help.
Typing tutorials, like Mavis Beacon14 and Typing Trainer,15 have
been available for decades, and don’t cost very much.

Unfortunately, these programs assume that you want to learn
how to touch-type in QWERTY, since it’s a safe bet most customers
want to learn how to touch-type using the standard layout. These
programs usually begin with the keys on the home row. QWERTY’s
home row and the Colemak home row are di�erent, so QWERTY
tutorials won’t help me.

Dvorak has been around long enough that some programs support
it, but Colemak is relatively new. It’s probably a good idea to use
some sort of typing tutorial, but I’ll need to �nd one that’s capable
of supporting Colemak.

Fortunately, I have a lead. As I was browsing Hacker News during
my programming research, I found a post on Keyzen,16 an open-
source typing trainer created by Rye Terrell. Terrell developed
Keyzen to help programmers learn how to type faster. The program
runs in a standard web browser, and includes uncommon
punctuation marks like parentheses, brackets, and slashes:
characters that programmers use quite often, but most typing
trainers skip. Terrell posted the full source code for Keyzen on
GitHub, and invited other programmers to use or modify it.

The program itself is quite simple: it displays a set of seven
characters, beginning with letters on the home row. Your job is to
type the characters in that sequence.

As you type, the program plays sound e�ects. A correct character
creates a classic typewriter clack, while an incorrect character
produces a thwack! and turns the character red.

Once you complete a set, the program serves up a new one. If
you type a character incorrectly, the program will automatically
introduce that character into later sets. If you type all of the
characters correctly for three sets in a row, you’ll hear a very
satisfying ding!, which means you’ve leveled up. Keyzen then
introduces a new character, and the training continues.

Modifying Keyzen

Keyzen, like most typing trainers, supports QWERTY by default.
Since the program is open source, however, I may be able to modify
it to make it suitable for learning Colemak.

My programming practice is about to come in very handy.
I made a copy of the Keyzen source code, then opened the

program �les on my computer. The program itself is simple, so it
was easy to �nd the section of the program that controlled which
characters were displayed, and it was just as easy to rearrange them
however I wanted.

The original program introduced characters on QWERTY’s home
row �rst, starting with the index �ngers, then adding characters
until the home row was complete. Next came the top row,
progressing from the middle of the keyboard to the periphery, then
the bottom row, following the same pattern.

Using Keyzen’s training pattern as a model, I edited the progam
to use the Colemak character set. The physical key pattern remained
the same, but the sequence now taught Colemak instead of
QWERTY.

When I closed the program, I had my very own Colemak typing
tutorial. Success!

If you’re interested, you can try the program yourself: it’s at
http://�rst20hours.com/keyzen-colemak.

Fine-Motor Skills

I have my �rst typing tutorial, and my �rst goal is simple: learn
where each key is located on the keyboard.

I �re up Keyzen and start typing (represents a space):
nn nn n
n nn n
nnn nn
tntt tn
t tntt
tttttnt

This type of practice isn’t at all glamorous, but it’s necessary. By
drilling the location of each character in semi-random order, I’m
helping my brain translate seeing (or thinking) a character into a
�ne-motor movement in my �ngers.

In addition, Keyzen is helping me learn e�ciently in a number of
ways. First, Colemak is designed to place the most commonly used
letters on the home row, under the strongest �ngers. Keyzen
introduces these characters �rst, so I’m mastering ARSTDHNEIO
before getting to QWZXYM.

When I make a mistake, Keyzen reintroduces the character into
the practice sequence. As a result, I’m spending most of my time
practicing the letters I have the most trouble with. This is a form of
spaced repetition, which happens to be combined with instant
feedback, making the practice extremely e�cient.

I set up a practice schedule: at least two sessions of twenty
minutes, with a short break in between, at the end of the day, just
before bed.

http://first20hours.com/keyzen-colemak

There’s a method to my madness: acquiring any type of motor
skill requires physically changing the structure of your brain, and as it
turns out, sleep is instrumental in that process.

Learn While You Sleep!

Over the past four decades, motor skill acquisition has been a very
active area of psychological research. If you go to any well-
provisioned academic library, you can �nd shelf after shelf of
research on skill acquisition in general, and motor skill acquisition
in particular.

I did just that. I wandered the cognitive psychology stacks at
Colorado State University, searching for useful information on skill
acquisition. I had no trouble at all �nding books and studies.
Unfortunately, most of this research is very wonkish, full of
academic jargon.

Fortunately, it’s not all gibberish. Here’s an excerpt from a study
that caught my eye:

Stages of Motor Skill Learning (2005)17

Successful learning of a motor skill requires repetitive training … This article
covers the growing evidence that motor skill learning advances through stages,
in which di�erent storage mechanisms predominate. The acquisition phase is
characterized by fast (within session) and slow learning (between sessions). For a
short period following the initial training sessions, the skill is liable to
interference by other skills and by protein synthesis inhibition, indicating that
consolidation processes occur during rest periods between training sessions.
During training as well as rest periods, activation in di�erent brain regions
changes dynamically.

“Interference” and “consolidation” are the key words here. As you
practice a skill, your brain is extremely active, working to �nd
patterns and store them in memory. In the case of motor skills,
those patterns involve associating what you see, hear, feel, taste,
and think with the �ring of neurons that control the muscles in your
body. The stronger these neural connections, the better you’re able
to perform.

During practice, your brain is busy making these connections and
associations, but that doesn’t mean they’re stored instantly in the
structure of your neurons. It takes a while for these patterns to take
hold, which happens during a process called consolidation.
Consolidation is happening all the time, but it’s particularly
e�ective while you sleep.

Here’s the �rst study I found that draws a direct link between
sleep and skill acquisition:

It’s Practice, with Sleep, That Makes Perfect: Implications of Sleep-Dependent
Learning and Plasticity for Skill Performance (2005)18

Practice is often believed to be the only determinate of improvement. Although
repeatedly performing a new task often results in learning bene�ts, leading to the
adage “practice makes perfect,” a collection of studies over the past decade has
begun to change this concept. Instead, these reports suggest that after initial
training, the human brain continues to learn in the absence of further practice,
and that this delayed improvement develops during sleep.

Here’s the conclusion of that study:
Although the functions of the sleeping brain remain uncertain, rapidly
increasing literature now supports the role of sleep in modifying and improving
memory. These reports provide an abundance of converging evidence indicating
that sleep-dependent mechanisms of neural plasticity lead to skill memory
consolidation and consequently to delayed performance improvements. Di�erent
forms of simple and complex skill memory appear to require subtly di�erent
types of sleep for overnight memory enhancement, and several studies indicate
that sleep within the �rst 24 hours following initial practice is essential for
consolidation to develop.

E�ective skill acquisition, particularly motor skill acquisition,
seems to require sleep, which plays a major part in consolidating
the skill into long-term memory. Recent research suggests that, for
greatest e�ect, it’s best to sleep within four hours of motor skill
practice: even a short nap is better than nothing at all. Any longer,
and your brain’s ability to consolidate the information it gathered
during practice is impaired.

That’s why I’m practicing typing right before going to bed. If I go
to sleep within an hour or so of practice, I can help my brain

consolidate the motor movements more e�ectively.
The weird thing is that I can see this working. My �rst practice

session was horrible: I couldn’t get anything right, made mistakes
constantly, and barely progressed past the characters on the home
row. After a full night’s sleep, when I sat down in front of the
computer, I noticed that I was making fewer mistakes. Sleep had
consolidated what I’d learned the night before.

Our brains are seriously cool.

Cognitive Interference

Interference is the opposite of consolidation: it’s a disruption of the
consolidation process. If you practice or use a second, similar skill
shortly after practicing a new skill, that practice can interfere with
your brain’s ability to consolidate the new information.

The critical period for interference also seems to be roughly four
hours. If you wait to practice a con�icting skill after consolidation
has taken place, you’re less likely to interfere with the
improvements you gained in the primary skill.

That’s why I’m not practicing QWERTY immediately after
practicing Colemak. It would disrupt my brain’s ability to
consolidate my Colemak practice, slowing down my rate of skill
acquisition.

It’s also interesting to note that, after seven total hours of
Colemak practice, I’m suddenly having a hard time typing in
QWERTY, even though I’ve been touch typing in QWERTY for a
very long time. My brain is mapping typing motor movements to
Colemak, which seems to be making it more di�cult to access
QWERTY, at least for the time being.

After my brain adjusts to Colemak, I can go back and reacquire
QWERTY if I want to: based on what I’ve read from other Colemak
typists, it’s possible to become “keyboard bilingual,” and switch
back and forth on demand. For now, however, I’m focusing

exclusively on Colemak to minimize interference. Reactivating
QWERTY can wait.

Breaking the Looking Habit

I now have seven hours of deliberate practice under my belt,
averaging forty-�ve minutes every evening. I’m completing the
entire Keyzen sequence without much di�culty. I still make
mistakes, but those mistakes are coming less frequently. When I
retake the typing speed test, my results are much better: twenty
words per minute.

During the day, I’m getting some ambient practice in the form of
important e-mails that require an urgent reply. When I sit down to
type, it’s not as painful. I’m slow, but I can express myself. That’s
progress!

I’m noticing, though, that I’m looking at the keyboard a lot.
Having the correct keys on the keyboard is very handy for typing
odd strings of characters, like passwords, but it’s also a crutch:
whenever I feel uncertain, I look down. If I want to touch-type, I
have to break myself of that habit as quickly as possible, but that’s
di�cult, since it takes so little e�ort to look down.

Das Keyboard

To break myself of the looking habit, I decided to pick up a new
learning tool: a completely blank keyboard.

Das Keyboard is the most badass keyboard you’ll ever �nd. The
“Ultimate Model S”19 has no markings on it whatsoever. If you
can’t touch-type, you can’t use Das Keyboard … period. It’s funny
to watch reactions when people see it: even skilled touch typists are
intimidated.

I plugged in Das Keyboard and covered my laptop keyboard with
a piece of paper, so I couldn’t see any key markings at all. The

sensation was similar to when I switched to Colemak for the �rst
time: I was confused and frustrated, but only for a moment. The
motor skills I’d picked up in the �rst seven hours of practice kicked
in, and I found that I could type reasonably well. Whenever I forgot
a letter, I’d have to hunt for it for a few seconds by trial and error,
but I could function.

With nowhere else to look, I focused on the screen. Das Keyboard
was serving its purpose. By changing the keyboard, I changed my
behavior automatically.

Along with Das Keyboard, I modi�ed my training method. Typing
random characters gets old, so I switched to a program called Type
Fu.20 In addition to random characters and words, Type Fu contains
a database of proverbs and quotations, which makes practice a bit
more entertaining. The program also keeps track of which
characters you miss most often, which is handy. I’m �nding J, U, V,
and B di�cult at the moment.

Every night, I practiced for forty-�ve minutes. After a total of
fourteen hours of deliberate practice, I’m now typing at a rate of
forty WPM.

At this point, I’m perfectly functional: I can use e-mail and surf
the web relatively normally. I was even able to type a �ve-page
proposal without too much trouble. It took me longer than usual,
but it wasn’t the most frustrating thing I’ve ever done.

Deliberate Practice vs. Ambient Practice

Since I’m able to function, I want to test a hypothesis: How much
does deliberate practice matter?
Currently, I’m practicing in two ways: my Keyzen and Type Fu

sessions are deliberate practice, since I’m focusing on the task and
working actively to improve. My typing during the day is ambient
practice: whenever I write an e-mail or an essay, I’m typing in

Colemak, even though I’m focusing more on the content of the
message than my technique.

I wonder: What if I drop the deliberate practice for a while and
just continue typing e-mails and sur�ng the web? I’m two-thirds of
the way to my target performance level of sixty WPM after only
fourteen hours of deliberate practice. Can ambient practice carry me
the rest of the way, without additional focused e�ort?

I decided to do an experiment: I’m going to suspend my
deliberate practice for thirty days and see what happens. I’ll
continue typing normally in Colemak, without switching back to
QWERTY. With as much time as I spend on the computer, I should
be able to get enough ambient practice to hit sixty WPM, right?

After thirty days, I retook the typing test. Want to guess my
typing speed?

Forty WPM. Zero improvement.
Even though I was typing quite a bit, I wasn’t actively focused on

improving my skills. Ambient practice wasn’t enough to improve.
If you want to improve a skill, you need deliberate practice, at

least in the early stages of skill acquisition. Lesson learned.

The Final Push

Back to deliberate practice: there’s another test I want to try.
Human languages, including English, follow a power law curve

called Zipf’s law: a very small set of words makes up the vast
majority of actual usage. Based on an analysis of The Brown Corpus
(1964), a 1 million-word collection of 500 modern English
documents, only 135 words account for 50 percent of all English
usage.21 The word “the” itself accounts for 7.5 percent, while “of”
accounts for 3.5 percent.

You can take this idea even further: within most words, there are
common sets of two- and three-character groupings that appear over
and over again, like TH, AN, ING, and NCE. These groupings are

called n-grams (or sometimes n-graphs): “n” is a variable that stands
for the number of characters you’re grouping.

I was able to �nd a list of the most common n-grams in a book
titled Cryptological Mathematics by Robert Edward Lewand (2000).
N-grams are a major area of study in �elds like cryptography. If
you’re able to identify patterns in an encrypted message, that gives
you a clue about the contents. By comparing the n-grams in an
encoded message with the most commonly used n-grams in the
target language, cryptographers can solve complex ciphers.

Let’s put this theory to work. Here’s Lewand’s list of the most
common English 2-grams (digrams), in order of frequency of usage:

th, he, in, en, nt, re, er, an, ti, es, on, at, se, nd, or, ar, al, te, co, de, to, ra, et, ed,
it, sa, em, ro

And here are the most common 3-grams (trigrams), in order of
frequency of usage:

the, and, tha, ent, ing, ion, tio, for, nde, has, nce, edt, tis, oft, sth, men

These lists are very useful. The better I’m able to type these
sequences of characters, the faster I’ll be able to type in general.

Our brains are very good at this type of thing: procedural memory
is the term cognitive scientists use for motor skills that happen in a
certain order. By practicing the most common n-grams, I can train
the procedural memory involved in typing directly.

To do this, I downloaded a free program called Amphetype,22
which is designed for this sort of practice. The program allows you
to create custom training sets, as well as set certain thresholds of
performance, like words per minute and error rate.

When you begin a session in Amphetype, you can have the
program generate the practice set in any number of ways. I set the
program to display each n-gram three times, to display three sets of
items, and to repeat the sequence three times.

As a result, the �rst digram practice set looked like this:
th he in th he in th he in en nt re en nt re en nt re er an ti er an ti er an ti

My goal was to type the entire sequence at over sixty WPM with
at least 95 percent accuracy. If I fell short of those criteria, I’d have
to repeat the entire sequence.

Practicing in this way wasn’t entertaining, but it was very, very
e�ective. I drilled each sequence over and over again until I got it,
then focused on mastering the next.

Every day, when I sat down to practice, I started from the
beginning. The improvement from day to day was noticeable:
sequences that took me �ve tries the day before took one or two
tries the next. In no time, I was able to complete the whole set.

Once I mastered digrams, I moved on to trigrams. From there, I
found a list of the most common English words, which was
compiled by Dr. Peter Norvig.

Norvig is the director of research at Google. A few years ago, he
published a set of the most common English words based on
Google’s “trillion word corpus,” which contains every unique word
Google’s search engine spider has ever indexed.23

Norvig’s intent in publishing the data was to help programmers
build useful utilities like spell-checking tools, but in my case, it was
the perfect training set. I pulled the top hundred most commonly
used words, added them to Amphetype, and kept drilling.

After eight additional hours of deliberate practice, I took a typing
speed test. The result, after several consecutive tests to ensure it
wasn’t a �uke: sixty WPM, with bursts of seventy to eighty WPM,
at 98 percent accuracy. Total time spent in deliberate practice:
twenty-two hours.

Mission accomplished!

Impressions from Sixty WPM

I like typing in Colemak a lot. I’m no longer frustrated. Instead, I’m
wondering how I coped with QWERTY for so long.

Typing on QWERTY feels like your hands are �ying all over the
keyboard: lots of movement in every direction. The layout doesn’t
make any logical sense at all: characters you use all the time are in
some of the hardest to reach areas of the keyboard.
Colemak, by contrast, feels like you’re twiddling your �ngers to

make words appear on the screen. Your hands visibly move much
less, and you spend a lot less time reaching for characters on the top
and bottom rows. It’s a nice change from QWERTY, and I can’t
imagine going back.

Reviewing the Method

Let’s review the core of the method I used to relearn how to touch-
type:

I learned how to change my keyboard layout to Colemak.
I created a fast feedback loop by rearranging the physical keys on the keyboard, so
if I forgot where a character was located, I could �nd it easily.
I used the Keyzen typing tutorial to learn the placement of characters by touch,
learning the most-used characters �rst. Keyzen reintroduced characters to the
training set as I made mistakes, so I spent most of my time practicing di�cult
characters until my accuracy improved.
I practiced for forty-�ve minutes every night, just before going to bed, so my brain
could consolidate the motor skills into long-term memory most e�ectively.
Once I got to functional speed (twenty WPM), I switched to Type Fu, focusing on
typing sentences as fast as possible with over 99 percent accuracy.
When I reached forty WPM, I used Amphetype to train using the most common
English digrams and trigrams, further increasing my speed and accuracy.
Once I mastered the n-gram sets, I switched to training that used the most common
English words in Amphetype until I reached sixty WPM sustained with 98 percent
accuracy, which happened at the twenty-two-hour mark.

Where I’m Going from Here

Now that I’m typing a solid sixty WPM on Colemak, I have no
pressing need to keep training for raw speed. At this level, I’m able
to write as fast as I need to. Since my typing speed is no longer the

limiting factor in my output, speed training is no longer my biggest
priority.

Speed typing is a skill in itself. Some of the fastest typists in the
world can clock in excess of 180 WPM on normal keyboards, but
improvements in test speed do not necessarily equate to
improvements in speed of writing or coding. These tests always
involve typing what you see on the screen, so the primary skill
speed typists are practicing involves looking farther ahead in the
text and keeping it in short-term memory long enough for the
�ngers to type it.

While I’d love to be able to write �nished prose at over 180
WPM, that’s beyond even the fastest typists. Typing is harder and
slower when you have to create whatever it is you’re putting on the
page.

I can, however, bene�t from continuing to decrease my error
rate. In that spirit, I’m continuing to practice common words,
digrams, and trigrams with Amphetype, and practicing using my left
pinkie �nger for error correction. By decreasing my error rate, my
e�ciency will increase, and my speed will most likely increase with
it.

What surprised me most about learning Colemak was how easy it
was to overwrite almost twenty years of previous experience touch
typing using QWERTY. I assumed that two decades of muscle
memory would take way more than twenty hours to replace. I was
wrong.

Our brains are easier to change than we think.

7

Go

Lesson: Explore, Then Decide

Go uses the most elemental materials and concepts: line and circle, wood and stone, black
and white, combining them with simple rules to generate subtle strategies and complex

tactics that stagger the imagination.
—IWAMOTO KAORU, 9-DAN PROFESSIONAL GO PLAYER

For supplementary images, video, and commentary about this chapter, visit
http://first20hours.com/go.

I am the sword in the darkness, the watcher on the wall.
The night is cold: snow is falling. Behind me, torches cast

�ickering light over my compatriots. We stand on the castle’s
rampart, watching. Waiting.

On the far side of the castle bridge, a host of enemy soldiers is
massing just out of range of our catapults, preparing to strike.
Warriors, thieves, and rangers are sharpening deadly weapons.
Necromancers are summoning armies of disgusting undead
creatures. Engineers are preparing mortars and �ame rams:
powerful weapons designed to breach our gates.

This horde intends to steal my realm’s most treasured possession:
a glowing orb of great power. They will not take it. Not on my
watch.

We are well prepared. To either side of where I’m standing,
soldiers are manning ballistas and arrow carts, ready to unleash
their deadly payloads on the invading force. Between the defenses

http://first20hours.com/go

elementalists are preparing to rain �re and lightning on the enemy
host. Our guardians and mesmers have set runes and re�ective
shields along the perimeter, granting us protection from arrow and
spell, at least for a while.

We wait. The snow falls, and the torchlight dances on my
polished steel armor.

We will not fall. We will not break. We will �ght, and we will
win.

Out of the darkness, an enormous boulder appears, �ying high
above the enemy forces. The rock crashes into the castle gate and
shatters, splintering the reinforced wood.

The enemy roars, then charges across the bridge.
In an instant, my sword and shield are in hand. My battle cry

echoes o� every stone, carrying might and fury to every defender
on the wall.
“FOR GREAT JUSTICE!”

Away Put Your Weapon, I Mean You No Harm

Leading an army in large-scale siege warfare is an enjoyable way to
spend a Saturday evening.

I’m not a fan of watching television, movies, or sports. Instead,
you’re likely to �nd me playing video games like World of Warcraft
or Guild Wars 2 for an hour or two.

I enjoy games: preferably challenges that involve casting spells,
battling monsters, and outwitting enemy players. Since a young
age, I’ve loved epic stories about wizards, warriors, and heroic
quests, and video games make it possible to become a character in
these adventures, at least for a while.1

My generation was the �rst to grow up with immersive video and
computer games. Beginning with the early Atari and Nintendo
consoles, games have grown in detail and complexity. Now, it’s

possible to �ght Internet dragons and other players in real time
with allies from all over the world.

Part of what appeals to me about games like these is the skill
that’s required to play well. Anyone can create a character, but to
wade into battle and emerge victorious, you have to know what
you’re doing.

We’ve come a very long way from Mario jumping on enemies
and shooting the occasional �reball. Now, it’s common for video
game characters to have close to one hundred potential abilities. To
play well, you have to know what those abilities are, when to use
them, and how to customize your character for greatest e�ect.

There’s a lot to learn. Which abilities do the most damage, or
protect you from harm? What can enemy monsters do? What’s the
best strategy when �ghting other human players?

The more I play, the better I become. That’s why it’s fun.
Video games, historically speaking, are brand new. Games of skill

and chance, however, have been part of the human experience for
thousands of years.

The Oldest Strategic Board Game in the World

A while ago, I stumbled upon an interesting game. Compared to
what I’m used to playing, the game is quiet, almost serene. Beneath
the surface, however, there’s high drama. The board is a map of a
great war, and the players are generals, battling against each other
to win ultimate supremacy.

Go is the oldest game in the world still played in its original
form. Based on historical records, Go originated in ancient China,
and has existed under its current rule set for at least three thousand
years, with some historians estimating upward of four thousand
years. If age is any indication of quality, Go has a lot going for it.

The Chinese name for Go is weiqi. Wei () means “surrounding”
and qi () means “board game.” Together, these characters become

weiqi (, simpli�ed:), which means “game of surrounding.”
That’s a nice, simple description of the game’s victory condition:
surrounding the opposing player.

Go was introduced in Europe and the Americas via Japan, so the
English Go is a simpli�cation of the Japanese word for the game,
igo (). Whether you refer to the game as Go, weiqi, igo, baduk,
or some other term, the game is the same.

The Art of War

In the West, chess is the most popular strategic board game, so we
can use it as a contrast. On the surface, the games have many
similarities.

Each game is played by two players, Black and White. The game
takes place on a square board. Black moves �rst. The players take
turns making moves until the game is over. You can think of the
game as a military con�ict, where the players are opposing
generals.

That’s where the similarity ends.
Chess is played on a board that’s eight squares by eight squares,

for a total of sixty-four squares. Each chess piece occupies a single
square. The board resembles a battle�eld, and the pieces are the
soldiers.

Here’s what a chessboard looks like at the beginning of a game:

Go, on the other hand, is played on a board made up of nineteen
vertical lines that intersect with nineteen horizontal lines. Stones
are played on the intersections, not on the squares. As a result, there
are 360 intersections available for play on a Go board, 5.625 times
as many as on a chessboard.

Here’s what a Go board looks like at the beginning of the game:

Notice the di�erence? Not only is the Go board much larger, but
the game begins with no stones on the board. In Go, stones are

generally added during the course of the game. In chess, pieces are
removed as they’re captured.

Notice that the goban (board) is square. The little dots on the
board (called “star points”) are perfectly symmetrical. Those points
are important, and we’ll come back to them in a bit.

In chess, there are six di�erent types of pieces, and each piece has
special rules and abilities. Pawns always move straight ahead,
except when they move to capture other pieces. Bishops can move
diagonally, but can’t move vertically or horizontally. Rooks can
move horizontally or vertically, but not diagonally. Knights can
jump other pieces, but have to move two squares horizontally and
one square vertically, or else two squares vertically and one square
horizontally. The queen can move horizontally, vertically, or
diagonally, but can’t jump other pieces. The king can move in any
direction, but can only move one square at a time, unless it jumps a
rook using a special move called a “castle.” There’s a lot to
remember.

Every Go move, in contrast, is the same: a stone is placed on an
intersection. Unless a stone is “captured” later in the game, a stone
laid is a stone played.
Chess pieces are captured by one of the opponent’s pieces, like

single combat on a battle�eld. The rook bashes the bishop over the
head with a huge mace, and the bishop exits the game.

Go stones are captured when they are surrounded on all sides by
the opponent’s stones. When Black’s army is surrounded on all sides
by White’s, Black’s stones surrender, and are taken hostage.

Professional chess games usually contain 30 to 40 moves. In a
game of Go, the �rst 30 or so moves are considered opening moves:
the endgame begins around move 100. Complete games of Go
regularly top 250 moves.

In all ways, the scale of Go is much larger than that of chess. If
every game of chess is a battle, the goban is a map of a massive
war.

So how do you play Go, exactly? Let’s dig in.

The Rules of the Game

Believe it or not, Go has only seven major rules, and we’ve already
covered two of them:

1. Stones are played on the intersections.
2. Black and White take turns placing stones on the goban.

The next �ve rules de�ne the game’s progression and victory
conditions:

3. Stones are “captured” when they are surrounded on all sides by the opponent’s
stones.

4. Playing a stone that’s immediately captured (“suicide”) is prohibited.
5. Repeating the same sequence of moves over and over again in an in�nite loop (a

situation called ko) is prohibited.
6. The game ends when the players run out of stones, one player concedes the game,

or both players pass.
7. The player who surrounds the most territory on the board at the end of the game

wins.

In competition play, a few more rules are introduced to remove
ambiguities (such as “what constitutes a repeating loop?”), specify
the scoring method, and prevent ties. Otherwise, those are the
rules.

Pretty simple, right?
Learning the rules of Go is easy: it only takes a few minutes. The

rules themselves aren’t complicated.
There’s a very old Go proverb, however: “a few moments to

learn, a lifetime to master.” Combine these simple rules with a
simple board and simple stones, and you get mind-blowing
complexity.

The Size of the Universe
While the baroque rules of Chess could only have been created by humans, the rules of Go

are so elegant, organic, and rigorously logical that if intelligent life forms exist elsewhere in

the universe, they almost certainly play Go.
—EDWARD LASKER, CHESS GRANDMASTER AND AUTHOR OF GO AND GO MOKU

Let’s say we want to create a computer program that plays Go
intelligently, similar to Deep Blue, the famous arti�cial intelligence
program that defeated Garry Kasparov, the reigning world-
champion grandmaster, in 1996.

Typically, computers outwit human players through sheer
computational power: they calculate all of the possible legal moves
on the board, then choose the move that has the highest
mathematical probability of success, based on a vast library of past
game data.

On a chessboard, this type of computation isn’t easy, but it’s
possible. There are sixty-four squares, and each piece’s movement is
constrained by speci�c rules. Since each piece can only move in
certain ways, the program only needs to consider a small range of
options.

In a game of Go, the active player can place a stone on any open
intersection on the board. The game begins with 360 possible
choices, so from the beginning, our �edgling AI program has a lot
more analysis to do.

Let’s do some quick math. How many possible sequences of �ve
moves can be played on a Go board, assuming it’s the beginning of
the game and neither player captures the opponent’s stones?

Here’s the calculation:
360 * 359 * 358 * 357 * 356 = 5,880,282,488,640

That’s over 5.8 trillion possible sequences, and that’s only the �rst
�ve moves.

The math gets crazy very, very quickly. Remember when I
mentioned that it’s common for Go games to last 250 moves?
Depending on your assumptions, there are approximately 2.08 times
10170 sequences of legal moves on a nineteen-by-nineteen-size Go
board.

If that math is correct, there are more possible legal games of Go
than there are subatomic particles in the known universe.

It’s a mathematical certainty that every Go game that has ever
been played has never been played before in the history of the
universe, even if you’re willing to throw in the possibility that there
are billions of advanced alien civilizations somewhere out there that
also happen to play Go.2

Given current technology, it would take even the most
sophisticated computers running the best brute-force algorithms
about four hundred years to calculate a single optimal move,
assuming the program completed a calculation every few
milliseconds.

Mind = blown. This game is huge.

So How Do Players (and Computers) Play Go?

If human players relied on brute-force analysis to play Go, they’d
go insane. They obviously don’t: skilled human players can identify
the best moves on the board in a few seconds. How do they do it?

Go players rely on pattern recognition to identify high-value
moves. Players use a lot of words that invoke intuition, like “shape”
and sente (initiative). The best Go players seem to rely as much on
geometry, aesthetic beauty, and emotion as they do on rigorous
logic and analysis.

That makes sense: the human brain isn’t very well equipped for
brute-force number crunching, but it’s awesome at pattern
recognition. By noticing patterns in the stones on the board, as well
as patterns in how the stones are being played, skilled Go players
are capable of reading the current situation, then �nding the best
move: all in less than four hundred years.

Even more impressive: the very best players are able to anticipate
how stones will be played in the future, often thirty to forty moves

ahead. If you �nd yourself playing with a professional, it will
probably feel like they’re reading your mind.

An Actual Game
The di�erence between a stone played on one intersection rather than on an adjacent
neighbor is insigni�cant to the uninitiated. The master of Go, though, sees it as all the

di�erence between a �ower and a cinder block.
—DAVE LOWRY, AUTHOR OF THE CHALLENGE OF GO: ESOTERIC GRANDDADDY OF

BOARD GAMES

Here’s what a game of Go looks like in progress:

This is a diagram of a real game: one of the most famous games
in the history of Go.3

In 1846, Shusaku of House Honinbo, a seventeen-year-old 4-dan,
was invited to play Gennan Inseki, an 8-dan. Inseki was the head of
House Inoue, one of the four major professional Go schools in mid-
nineteenth century Japan.

Shusaku accepted the honor, and the match attracted an audience.
No one expected Shusaku to win, but he was strong enough to put
up a �ght.

After playing a short game in which Inseki granted Shusaku a
two-stone handicap, it was clear Shusaku didn’t need it. Inseki
conceded to start a second game with no handicap stones: even
odds.

Shusaku, as the challenger, took Black. The early game was
�awless, except for a minor mistake by Shusaku in an exchange on
the lower right side of the board. One hundred and twenty-six turns
into the game, Inseki held the lead, as expected. After all, who
could best the master?

Shusaku’s next play changed the game. You can see the stone
yourself: it’s the Black one just above the center of the board that’s
marked with a square.

After Shusaku’s move, a spectator noticed something odd: Inseki’s
ears were red. The master was angry.

Shusaku’s move at 127 was good: very, very good. The single
central stone simultaneously lent support to Shusaku’s stones at the
top, right, and bottom of the board while establishing new in�uence
to the left. The move was the perfect balance of o�ense and
defense.

Inseki was in trouble, and he knew it. With a single stone,
Shusaku was able to in�uence the entire board. The game
continued, with Inseki suddenly �ghting for control.

Here’s what the game looked like at move 325:

Take a moment to study the board. Which areas are surrounded
by Black, and which are surrounded by White? Who has surrounded
more territory on the goban?

Inseki admitted defeat, and Shusaku won by two points. The
game would go down in history as the Ear Reddening Game, and
move 127 the Ear Reddening Move.
“Invincible Shusaku” went on to become one of the most

celebrated Go players in history, renowned for his nineteen
consecutive castle game victories, which were hosted annually by
the Shogun. He died on September 7, 1862, at age thirty-three, after
tending to victims of a cholera outbreak.

Pattern Recognition

There’s something we can learn from these diagrams. Here’s the
Ear Reddening Move again:

Go games are usually presented from Black’s perspective. We’re
seeing the board the way Shusaku saw it during the game.

Here’s how Inseki (White) viewed the board, a rotation of 180
degrees:

In chess, there are only two primary perspectives: Black sits
across from White, and both players begin the game with all of
their pieces on their respective sides of the board. Chess is never
played with White’s and Black’s pieces arranged on the left and
right sides of the board. In addition, chess moves have a general

pattern: away from the player, toward the opponent’s side of the
board.

As a result, chess players can learn to recognize speci�c patterns
of moves on the board. Here’s a famous pattern, called the King’s
Gambit:

A large portion of training to become a chess grandmaster
involves memorizing common patterns that appear in games. The
best chess players can see a pattern developing on the board in an
instant, since the patterns always look the same. If you try to play a
King’s Gambit, a grandmaster will notice immediately, and will
know exactly how to respond.

While pattern recognition in chess isn’t easy, it helps that players
never have to look at the board rotated ninety degrees to the left or
right, which makes the patterns much easier to learn.

In contrast, since a goban is perfectly symmetrical, no side of the
board has any special meaning. As a result, you can view the goban
from any of the four sides of the board.

At the beginning of a Go game, any handicap stones are placed by
Black on the star points, those little black dots, in a symmetrical
pattern. Otherwise, the board is empty.

Go stones can be placed on any empty intersection at any time. A
player can play on the top of the board one turn, and the bottom of

the board the next. They can play on the left side, then play on the
right. There’s no universal, predictable direction of play like there
is in chess.

Let’s go back to the Ear Reddening Move. Here’s Shusaku’s
perspective:

Again, here’s Inseki’s perspective:

Now, here’s the perspective from Shusaku’s right, or Inseki’s left:

And Shusaku’s left, or Inseki’s right:

The symmetrical nature of the goban makes pattern recognition
even more di�cult than it normally is. These four diagrams of the
Ear Reddening Move are exactly the same from a strategic
standpoint, even though they look completely di�erent to the
untrained eye. If you wanted to, you could rotate a Go board ninety
degrees after every move without dramatically a�ecting the game.

Go players can’t rely on the more straightforward techniques of
game memorization that chess players count on to identify
developing patterns during a game. Every pattern Go players learn
needs to be mastered from four perspectives, not just one.

That’s why Go players rely on intuition so much. The game is
much too large to memorize or calculate, so skilled players train
themselves to see developing patterns at a much higher level:
general shapes, directions of movement, and impressions of strength
and weakness.

Use Your Feelings …
[Go requires] the tactic of the soldier, the exactness of the mathematician, the imagination

of the artist, the inspiration of the poet, the calm of the philosopher, and the greatest
intelligence.

—ZHANG YUNQI, IN AN INTERNAL DOCUMENT OF THE CHINESE WEIQI INSTITUTE,
1991

One of the early articles I read about Go made an interesting
argument: mastering the game isn’t really about competing with or
dominating the opponent. It’s about mastering yourself.

Games of chance have been around since the dawn of human
civilization. When you’re rolling dice, Lady Luck (or rather, Mama
Physics) decides who wins. Skill isn’t a factor.

Games of skill, by contrast, usually focus on outwitting or
outperforming other players. Who exhibits the most aptitude and
control? Who can �nd the biggest opportunities �rst? Who is better
at exploiting the weaknesses of their opponent? Chess falls into this
category: becoming great involves mastering tactics and reading
your opponent.

Go is a unique game in this respect: the introduction of handicap
stones is a built-in way of intentionally making strong players
weaker. If your opponent begins the game with a few stones on the
board in key strategic positions, that dramatically in�uences how
you play. Here’s where the handicap stones are placed:

In a properly handicapped game of Go between two players of
roughly equal skill, each player should win about half the time. If
one player dominates the other, in the next game, the losing player
begins with one or two additional stones on the board.

Because of this handicapping feature, you can think of Go as a
game you play against yourself. Sure, you’re making decisions
based on the actions of your opponent, but winning the game is not
the only goal.

As your skills increase, the number of handicap stones you need
goes down. When you play strong opponents, you’ll be able to do
battle on even terms. Eventually, you’ll be giving stones to weaker
opponents.

Go history takes the self-mastery aspect of the game to an
extreme: learning to play well requires mastering your thoughts and
emotions. Advanced players can learn to see signs in the stones that
reveal their opponent’s mental and emotional state.

According to the stories, ancient masters could read a game
transcript and identify when each player was feeling anger,
confusion, envy, or greed, as well as pinpoint the precise moment
“when the maid entered to serve tea.”

Stone Ninja

Throughout the centuries, Go’s handicapping system evolved into a
ranking system: the di�erence in rank determines how many stones
the lower ranked player can place at the beginning of the game.

Believe it or not, the “belt” system of ranking in the martial arts
is derived from Go rankings. As players increase in skill, he or she
moves up in ranking.

Beginners start at a rank of 35 kyu (similar to a white belt). As
the player gets stronger, his or her rank decreases until it reaches 1
kyu.

The next rank up from 1 kyu is 1 dan, the game’s equivalent of a
black belt. From there, the ranks increase until the player reaches 9
dan, the highest o�cial rank; 10 dan is an honorary title reserved
for winners of the top world tournaments.

Determining a player’s rank can be done in several ways. The
�rst is competition: if a player can win most of the time on even
terms against 12 kyu players, but loses most of the time against 8
kyu players, his or her strength is probably in the 10 kyu range. The
more games a player completes in ranked competition, the more
accurate his or her rank becomes.

The other way of estimating rank is by completing Go problems:
structured puzzles that present a situation, then ask the player to
determine the best move that achieves a speci�c result, like
“capture Black’s group” or “White to save.” As the player moves up
in rank, his or her ability to solve problems correctly increases as
well.

Since Go has been around for such a long time, a huge library of
Go problems is available for study. These problems are ranked by
di�culty: a 20 kyu player will struggle with 10 kyu problems,
while a 1 dan player will think the 10 kyu problems are easy and
obvious. Kiseido, a specialty publisher of Go books, publishes a very

handy series of ranked problems, titled Graded Go Problems for
Beginners, that’s very useful for this purpose.

The existence of ranked problems makes Go a game you can
study as much as you play. Completing the problems in these books
is a good way of practicing Go skills on your own, as well as
estimating your relative strength.

I’m ready to get started. What do I need to practice?

Gearing Up

It’s di�cult to play a game of Go without a board and stones, so I
picked up a nice set from Yellow Mountain Imports,4 a company
that distributes Go products from all over the world in the United
States.

Go boards and stones vary widely in price and quality.
Inexpensive boards and simple glass stones can be acquired for a
few dollars, so a basic game set is easy to obtain.

On the other end of the spectrum, superior quality boards made
of �ne kaya wood, the traditional material used in Japan, sell for
tens of thousands of dollars. Likewise, you can purchase stones
made of genuine slate and shell, but they’ll cost you dearly.

After doing some research, I settled on a nice shin-kaya (imitation
kaya, typically white spruce) �oor board and a set of Yunzi stones,
which are made by a company of the same name in China. The
company considers the composition of their stones a trade secret:
the stones feel nice and solid, create a very satisfying sound when
you place them on the board, and are reasonably priced. The stones
come with traditional wooden bowls, which are placed beside the
goban during play.

In addition to purchasing the goban and the stones, I also picked
up several Go books for beginners, including:

Go: A Complete Introduction to the Game by Cho Chikun (2010)

The Second Book of Go: What You Need to Know After You’ve Learned the Rules by
Richard Bozulich (1998)
How Not to Play Go by Yuan Zhou (2009)
Lessons in the Fundamentals of Go by Toshiro Kageyama (1996)
Opening Theory Made Easy by Otake Hideo (1992)

I found these books via a very useful website called Sensei’s
Library,5 which has hundreds of pages of information and
commentary about Go history and technique. One page is a huge list
of opinions about the best Go books available, compiled by
advanced players, which is solid gold at this stage of the learning
process. I read the entire page, which lists close to one hundred
books.

Here’s how I chose which books to read �rst: Go: A Complete
Introduction to the Game was easily the top recommendation for
beginners, so that was a no-brainer. Likewise, The Second Book of
Go was highly recommended as a beginning text on strategy. The
book assumes you already know the basic rules, so it spends more
time on fundamental techniques.

How Not to Play Go is an example of an inversion, which I was
happy to see: you can learn a lot about how to do something well
by studying common mistakes. For most skills, you have to research
the inversion yourself, but in this case, there’s a whole book put
together by an expert. That’s great!

Lessons in the Fundamentals of Go, often called “The Yellow Book,”
is the book that most advanced players cite as the single text that
helped them improve their game most dramatically. It looks a bit
too advanced as a starter text, so I’ll read it after I’ve learned the
basics.

Finally, I chose Opening Theory Made Easy because it’s clear, even
from my basic analysis, that the opening of the game is extremely
important. Since the goban is empty at the beginning of the game
aside from any handicap stones, the �rst thirty to forty stones that
are played create a structure that profoundly in�uences the rest of

the game. If you don’t know how to play the opening correctly, and
your opponent does, you’ll probably lose, making openings a
subject well worth studying from the beginning.

Follow the White Rabbit

In addition, modern technology has made practicing Go a bit easier.
SmartGo, a program available for iPhones and iPads, includes a
very good built-in AI program, a database of ranked Go problems,
and annotated historical games to study.

SmartGo is designed to take advantage of the device’s
touchscreen, so you can place stones on the “board” by touching the
appropriate intersection. This makes completing Go problems much
easier. Instead of imagining the solution, then looking up the
solution by hand in the back of a printed text, the program gives
you instant feedback. This fast feedback loop makes it much, much
easier to practice problems, particularly problems that require more
than one move to solve.

I’m all set. I have everything I need to learn how to play. There’s
only one more thing I have to do … ensure that I spend my time
playing Go instead of playing something else.

Eliminating Distractions

Go isn’t as viscerally compelling as an action-packed video game.
Learning Go will require time and concentration. I’m already
playing other games, but I have a very limited amount of leisure
time. If I want to progress in Go as quickly as I’m able, I’ll need to
focus.

That means I need to eliminate potential distractions. The biggest
immediate threat is other games: time spent whomping digital
monsters is time not spent learning Go. If I keep playing video
games, I won’t have any time to learn.

Remember, time is never found: it’s made.

Accordingly, I’m choosing to not play other games until I’ve
invested at least twenty hours in Go. I can’t a�ord the distraction if
I want to learn quickly.

Here’s a useful tactic in these sorts of situations: the best way to
change your behavior is to change the structure of your immediate
environment. If you don’t want to do something you’re currently
doing, make it impossible to do. If you can’t make the behavior
impossible, make it as di�cult, expensive, or prohibitive as you
possibly can. The more e�ort required, the less likely you are to go
back to your previous behavior.

Farewell, World of Warcraft … it’s been nice knowing you.
Before embarking on my Go adventure, I canceled my World of

Warcraft account and deleted the game from my computer. If the
game’s not installed, I can’t play it even if I want to. I won’t play
video games under any circumstances until my Go experiment is
o�cially complete.

The Rules of the Game, Reexamined

The best place to begin is by reexamining the rules. I’ve already
read them, but I need to see what they look like on a goban.

There’s a nice Go feature that makes it easier to learn: you can
change the board size. Since the goban is symmetrical, you can
make the board larger or smaller, as long as you choose an odd
number of lines. The same rules and tactics still apply.
Competition boards are nineteen by nineteen, but for learning

purposes, it’s best to start with a seven-by-seven board. That’s big
enough to have space to learn the key ideas, but small enough that
the board isn’t overwhelming.

Let’s see what the rules look like on an actual board.

Give Me Liberty, or Give Me Death

Let’s begin with the third rule of Go: Stones are “captured” when
they are surrounded on all sides by the opponent’s stones.

When you play a stone on an intersection, the intersections
adjacent to that stone are called liberties. Imagine soldiers on a
battle�eld: if there’s a safe place to retreat close by, the soldiers
can’t be captured.

The maximum number of liberties a stone can have is four:

Liberties are reduced when the opponent attacks by placing a
stone immediately adjacent to yours. This attack reduces White’s
stone to three liberties:

Another attack reduces White’s stone to two liberties:

Look out, White! Only one liberty left:

This situation is called atari.6 If Black eliminates White’s last
remaining liberty, White’s stone is taken prisoner, and is removed
from the board:

Pretty simple so far. If you don’t want your stones to be
captured, you need to make sure they have as many liberties as
possible. If you want to capture your opponent’s stones, remove
their liberties.

No Suicide, Please

This is a good opportunity to look at the fourth rule: Playing a stone
that’s immediately captured (“suicide”) is prohibited.

Let’s look at that last situation again:

This shape is called a ponnuki, and it’s very common in Go. The
space in the middle of the Black stones has no liberties, so if White
plays a stone there, it would be captured immediately. The fourth
rule prohibits “suicide” moves like this.

This rule becomes very important when we start looking at larger
groups of stones, so we’ll come back to it in a bit.

Backing into a Corner

In the middle of the goban, stones typically have many liberties
until they’re attacked. On the corners and the sides of the board,
there are fewer liberties, since there aren’t as many intersections in
the vicinity.

Here, Black has only one liberty remaining: the intersection
labeled “a”:

Black is in atari. If White plays at “a,” Black is taken prisoner:

This example illustrates the di�erence between the corners and
the middle of the board. In the corner, it only takes two stones to
capture. In the middle, it takes at least four. On the sides, it takes
three stones to capture.

As a result, it’s usually easiest to establish and defend territory
along the corners of the board. Sides are a bit harder, and the
middle is hardest of all, since it takes so many stones to trap the
opponent.

That’s why, if you look at the beginning of Go games, skilled
players follow a general pattern. First, they’ll establish positions in
the corner of the board. Once that early territory is secure, they’ll
branch out to the sides. The middle of the board is the last priority,
and is reserved for late in the game. That’s why Shusaku waited
until move 127 to play the Ear Reddening Move.

To In�nity, but Not Beyond

Now that we’ve learned the rules of capture, let’s examine the �fth
rule: Repeating the same sequence of moves over and over again in
an in�nite loop is prohibited.

This is a situation called ko, which is the Japanese word for
“in�nity.” In�nite loops are possible in Go, and if they were
allowed, they’d ruin most games.

Here’s what ko looks like. Black can capture White’s stone, which
is marked with a triangle, if they play at point “a”:

Notice what happened? We have the same pattern, only in
reverse. Now, if White plays at “a,” they can take back the stone:

Without a rule against ko, White and Black could battle over this
stone until the end of time. That’s why the rule exists: in a ko �ght,

the player that loses their stone �rst can’t retake the ko until at
least one turn has passed, preventing the in�nite loop.

In tournaments, there’s usually an additional rule called “super
ko.” Imagine there are two or more ko �ghts on the board. Players
could just cycle through ko �ghts in a larger in�nite loop. Once a
pattern is established, super ko kicks in, and players have to do
something else, or the game ends.

Victory Conditions

Now, let’s look at how the game ends. Here’s rule six: The game
ends when the players run out of stones, one player concedes the
game, or both players pass.

Simple enough. How do we determine who wins?
That’s rule seven: The player who surrounds the most territory on

the board at the end of the game wins.
Let’s look at an example. On a seven-by-seven board, there are

forty-nine intersections. Let’s assume the board is divided like this:

Black controls the left side of the board, which accounts for
twenty-eight spaces of territory. White controls the right side,
which equals twenty-one spaces. Black wins.

Here’s a variation: Black has managed to invade just a bit into
White’s territory. Black now has twenty-nine spaces, and White has
twenty:

The counting gets trickier when the board is larger, and groups
are scattered all over the place, like the end of the Ear Reddening
Game:

The general principle of counting territory is this: if territory is
contested, neither side gets points for it. Sometimes advanced
players will concede territory to the opponent without playing the
full resolution, so that territory counts as captured. If there’s a

dispute about who controls what territory at the end of the game,
play resumes until the dispute is resolved.

Estimating territory is a skill, and it requires practice.

En Garde!

That covers the basic rules. Now, what about common tactics?
The �rst thing to know is what an attack looks like. Direct attacks

remove a liberty from one of your opponent’s stones. Here, Black is
attacking the White stone marked with a triangle:

You can also attack indirectly, by placing a stone close to your
opponent. Indirect attacks are a way to strengthen your position in
an area before your direct assault begins. Here, Black is threatening
the White stone marked with a triangle:

Charge of the Knights

Attacks are the basic elements of o�ense. The basic elements of
defense are called connections and joints. Moves that balance o�ense
and defense are called approaches.

One common approach is called the “knight move,” which gets its
name from the movement of the knight in chess:

The knight move is evenly balanced between o�ense and defense:
it’s close to other stones, so it’s easy to connect if necessary, but it
extends your in�uence more than a one-step move.

There’s also a large knight move that’s even more aggressive:

This move trades defense for in�uence: it extends the player’s
range, but the stone will be harder to defend if it’s attacked.

Bamboo Is Stronger Than Steel

On the defense side of strategy, there’s a shape called a bamboo
joint that’s very solid. Here’s what it looks like:

Bamboo joints are very strong because, no matter how your
opponent tries to attack it, it’s easy to connect your stones into a
strong shape.

In this case, if White attacks at “a,” Black can connect at “b”:

Likewise, if White attacks at “b,” Black can connect at “a”:

Once Black connects the bamboo joint, it would take White nine
additional stones to capture the group. That level of protection is
hard to beat.

Easy enough: attacking, defending, and capturing seem relatively
straightforward, and knight moves and bamboo joints are easy
tactics to remember and understand.

Tempered by a Hundred Battles?

Now that I know the rules, as well as the rudiments of strategy, I
have a choice to make. Should I try to improve my game by facing
o� against human opponents, or is the most straightforward path to
skill studying the game by reading books and solving ranked
problems?

Expert players on Sensei’s Library have mixed opinions. Several
skilled players invoke Sun Tzu, author of The Art of War, opining
that it’s best to be “tempered by a hundred battles.” Others believe
studying Go problems and reading books on strategy and tactics is
the best way to improve at �rst.

I’m not sure what to think. There’s a local Go club that meets
every Wednesday, but they meet in the early evening, which
con�icts with family time. I’d love to play, but that doesn’t work
for me at the moment.

There’s another option: playing on Internet Go servers. Players
from all over the world congregate online to play, and servers are
up 24–7. Even better, these games are ranked, so you can estimate
your relative strength if you play enough games. It’s not a
tournament ranking, but it’s something.

I decided to check out the two most popular online Go
destinations: IGS (Internet Go Server) and KGS (Kseido Go Server).
Playing is simple: you create an account with your e-mail address,
download a Go program, and log in. From there, you can ask other
players for a game, or watch other players battle in real time.

I created accounts on both systems, then looked for my �rst real
opponent. I didn’t have a ranking, since I’d just created an account,
so I invited another unranked player. He accepted, and the game
started.

Since we were both unranked, there were no handicap stones. I
played Black, and thought my early game was solid. We took turns
establishing territory in the corners �rst, then on the sides. Thirty
or so moves into the game, I was feeling pretty good.

Then, White attacked. I wasn’t worried: my territory looked
strong, so I connected my stones to strengthen my position.

My study up to this point didn’t prepare me for what was about
to happen. Turn by turn, White destroyed me.

Territory I thought was secure was brutally invaded. Stones I
thought were safe were taken hostage.

I tried to counterattack, and my advances were blocked. I tried to
defend, and my protections failed.

I kept trying to gain ground, but an hour into the game, it was
clear my cause was hopeless. I conceded.

After the game was over, I asked my opponent how long he’d
been playing.
“Years,” he said. “I just created an account on this server, so I

don’t have a ranking yet.”
No wonder he destroyed me! I told him I was a brand new player,

and asked for advice on how to improve.
“Watch 10 to 20 kyu games. You’ll learn a lot.”
I thanked my opponent for the game, then logged o�.
What went wrong?
Looking back on the game, I thought I was building defensible

groups of stones, but I obviously wasn’t. Understanding why my
groups were captured requires looking at how large groups can be
attacked.

One Eye Bad!

Remember the rule against suicide moves? There’s an important
wrinkle in that rule: if a move that would otherwise be suicide
captures one or more of the opponent’s stones in a way that creates
new liberties, it’s allowed.

Here’s an example. The intersection at “a” has zero liberties for
White, since it’s surrounded by Black:

Normally, White wouldn’t be allowed to play at “a” under the
suicide rule, but in this case, White has Black surrounded. Black’s
last remaining liberty just so happens to be “a.” When White plays
at “a,” Black’s group is captured:

In Go, these types of spaces are called eyes. Depending on the
situation, they can be sources of either strength or weakness. If a
group has only one eye, it’s weak.

Here, Black is in trouble:

White captures at “a”:

White’s in trouble now:

Black captures at “a”:

This takes a bit of getting used to. Groups with only one eye are
easy to capture, so they’re fundamentally insecure.

Two Eyes Good!

That doesn’t mean eyes are bad: they’re necessary. That seems
weird until we examine the suicide rule again.

The exception to the rule against suicide only works if the stone
results in the capture of the opponent’s group. If it doesn’t, the
move isn’t allowed under the suicide rule.

That means that groups with two eyes are invincible. It’s like
building a fortress in the middle of enemy territory: no matter how
many stones the opponent attacks with, they won’t be able to
capture the group.

Here, Black’s group has two eyes:

If White plays at “a,” it’s suicide. If White plays at “b,” it’s
suicide. White can’t play at “a” and “b” at the same time, so Black is
safe, even though the group is surrounded on all sides.

Here, a group of White’s stones has two eyes on a side:

Here, a group of White’s stones has two eyes in the middle:

Notice how it took six stones to form two eyes in the corner,
eight stones to form two eyes on the side, and thirteen stones to
form two eyes in the middle? That di�erence in e�ciency is why
corners are easiest to defend, and the middle is always di�cult to
secure.

The False Eye (of Sauron?)

If having two or more eyes in a group makes it invincible, forming
eyes as quickly as possible becomes a huge priority. Unfortunately,
it’s not always easy to �gure out whether or not a shape that looks
like an eye actually is an eye.

Often, groups will form eyes that look solid, but are vulnerable to
attack. These shapes are called false eyes, and they’re deadly.

Here’s an example. Black’s group looks like it has two eyes, but
the stones at the top marked with triangles are vulnerable:

Let’s say it’s White’s turn. White can attack at 1 or 2, removing a
liberty. Black may try to escape along the top side, but in the very
next move, White will cut o� the escape route. No matter how
Black responds, White will then capture the marked stones by
playing at 3. That leaves the rest of the Black group vulnerable, and
the entire group will be captured when White plays at 4. Ouch!

A major part of Go strategy involves creating groups with two
eyes, avoiding false eyes, preventing your opponent from building
true eyes, and destroying your opponent when they build false eyes.
It takes a lot of experience and skill to create true eyes, and to
notice when eyes are false.

The “Dismantle”

That leads us closer to understanding the cause of my �rst major
loss. I thought I was creating secure territory, but in reality, I was
vulnerable to attack, and I didn’t realize it in time.

Here’s a simpli�ed example: look at all of the eyes Black has
created. With four eyes, that group has to be invincible, right?

Unfortunately for Black, that’s not the case. If White plays at 1 or
2, “a” or “b” will be captured:

Then, if White plays at 3, “c” and “d” will be captured:

Finally, if White plays at 4, “e” and “f” will be captured:

As a result, White is able to completely dismantle Black’s
“invincible” group. They were never true eyes, and Black pays the
price:

That’s the essence of what happened to me. I thought I was
building secure territory in the corners and on the sides, but I
wasn’t building two real eyes. As a result, my opponent was able to
dismantle everything I built. Lesson learned.

Chutes and Ladders

There are a few other important strategic concepts I didn’t fully
appreciate until I saw them in action.

The �rst is called a ladder. Whenever an attack occurs, the other
side has a choice: they can counterattack, or they can run. Often,
trying to escape is the better option. If the opponent chases, a
capturing race begins.

Let’s look at an example. Here, White’s stone (marked with a
triangle) is about to be attacked:

Black attacks at 1, and White escapes at 2. Black attacks at 3, and
White escapes at 4. Black attacks at 5, White escapes at 6, and so on.
Eventually, we �nd ourselves here:

It’s Black’s turn, and White has no place to run. When Black plays
at “a,” all of White’s stones are captured, and Black controls the
entire board. Game over!

There’s an old Go proverb: “If you don’t know what a ladder is,
don’t play.” This situation is a good illustration of why that’s a
valid position.

Now, let’s reexamine the same situation with a slight twist: White
has a stone (marked with a circle) on the far right side of the board.
What happens?

The �rst part is the same: Black attacks at 1, and White escapes at
2. Black attacks at 3, and White escapes at 4. The pattern progresses
until White escapes at 10. At that point, we see this:

If Black attacks at “a,” continuing the pattern, White will capture
Black at 7 by playing at “b.” If Black tries to defend at “b,” White
escapes Black’s wrath by playing at “a.”

A single stone on the opposite side of the board saved White from
total annihilation. That’s what makes Go so interesting: a stone that
looks disconnected and remote from the main action is capable of
changing the course of the game.

Reading ladders is a skill. On a nineteen-by-nineteen board, there
are many ways to start a capturing race, or �nd yourself on the
receiving end of an attack you want to escape from, creating a
ladder. In these instances, you need to be able to read ahead to
predict who’s going to win the race.

If you don’t think you can win, it’s better to sacri�ce a stone or
two than lose an entire group. If you predict victory, it’s in your
interest to provoke your opponent into playing a game they can’t
win, ultimately giving you a huge advantage.

Throwing Nets

Throwing a stone in the path of a potential ladder can be a very
good play. Likewise, trapping your opponent by placing a stone in a
surrounding position can be a good strategy.

Here, White wants to capture the Black stone (marked with a
triangle). Instead of attacking directly, White casts a net that
encircles Black indirectly:

If Black tries to escape at “a,” White blocks at “b.” If Black tries
to escape at “c,” White blocks at “d.” No matter how much Black
struggles, he can’t escape White’s net.

Aside from the eye issue, my opponent was much better at
provoking me to overextend. I found myself in ladders I couldn’t
win, or trapped in nets I didn’t notice until it was too late.

All of these things are what make skilled practitioners good at the
game. If you don’t know basic shapes like eyes, ladders, and nets,
you’re going to lose to players who know how to create and take
advantage of them.

Maximizing Practice Time

After my loss, I took my opponent’s advice to heart, and tried to
look for games with players ranked between 10 and 20 kyu.
Unfortunately, there weren’t many to watch.

Internet Go servers aren’t the most beginner-friendly places on
the net. The major servers and programs have been around for a
long time, so the interfaces are straight out of the 1990s, and it
takes a while to �gure out how to use them.

There also don’t seem to be many low-ranked players around.
And if you don’t know how to play the game very well, getting
stomped over and over again isn’t the most enjoyable experience.
Most of the active matches I found were between players 8 kyu and
above.

I tried watching a few games, but my rate of learning was very
slow. I was able to follow the moves just �ne, but not the reasons
why the players were making them. Sometimes sequences of moves
happened too fast, and I wasn’t able to keep up with the analysis. I
was sure there was a motive behind each stone, but I was too
inexperienced to �gure out what it was.

Full games of Go can take over an hour to complete, which was
another barrier. Several times, I began watching a game, only to

have to step away to wrangle Lela or help Kelsey with a chore.
Since the games were happening in real time, that meant I couldn’t
follow the game to resolution.

I tried the “hundred battles” approach, and based on my early
experiment, it wasn’t the most e�cient way to improve as a
beginner. I decided to change my strategy, substituting
unenlightened �oundering with structured study.

Man Against Machine

Every evening, I spent forty-�ve minutes studying Go problems,
�rst using the SmartGo program on my iPad, and later by working
through Kiseido’s Graded Go Problems series of books.

After studying problems, I then played a game against SmartGo’s
built-in AI program on a small nine-by-nine board. At �rst, SmartGo
stomped me, even with an eight-stone handicap. Embarrassing!

As I studied, however, my games began improving quickly. I
learned to take advantage of my handicap stones by going on the
o�ense, attacking White quickly and forming strong connections
whenever possible.

It didn’t take long to reduce my handicap stones to six, then �ve,
as I won games against the AI. After thirty games, I’m around the
four-stone handicap mark.

Estimating the score is challenging: sometimes I think I’ll be
doing well, but when I peek at the score, I’m behind by a signi�cant
margin. Since winning the game requires making pro�table moves
that increase the amount of territory you control, that’s a problem.
Often, a move I think increases my territory doesn’t, wasting a
move and creating an opening for the opponent.

Failure Modes

In conjunction with studying Go problems, I read the books I picked
up from the Sensei’s Library reading list. What I learned helped me

considerably.
Studying How Not to Play Go was an extremely good use of time.

According to Yuan Zhou, the author, beginners make several
common mistakes that cost them dearly:

Inexperienced players follow their opponent blindly. For example, when attacked,
poor players will automatically respond by defending, escaping, or
counterattacking in the same local area, instead of considering all available
options.
Inexperienced players don’t pay attention to the entire board. Sometimes, the best
move isn’t where the action is taking place; it’s on the other side of the board, far
away from everything. Battle is exciting, and poor players can be blind to the
opportunities present in quieter areas of the goban.
Inexperienced players don’t make the most profitable move. Go requires thinking in
terms of pro�t and cost: every move costs a stone, and you always want to get the
best bang for your buck. Often, this involves sacri�cing a stone or two, provided
you’ll reap larger bene�ts elsewhere.
Inexperienced players don’t value sente. In Go, “initiative” is a big deal: you want
to dictate your opponent’s responses as much as possible. Instead of focusing on
their agenda, you want your opponent to be so worried about preventing potential
losses that they ignore securing gains. Whoever establishes and keeps sente almost
always wins.
Inexperienced players aren’t good at estimating territory. As a result, they’ll spend
a lot of time �ghting a local battle or securing a small corner of the board while
their opponent takes over a huge amount of territory uncontested.
Inexperienced players get jealous of the opponent’s position. Zhou calls this the “red
eye problem,” and it usually results in a player making a wildly unpro�table move
just because they feel their opponent’s territory is getting too big.
Inexperienced players succumb to wishful thinking. It’s very easy to be enticed by a
group of stones that you could capture with only two stones, and fail to take into
account that you can’t take two moves in a row: your opponent gets to respond to
what you do. As a result, you waste precious stones, all in the vain hope that your
opponent is too dumb to notice what you’re doing.

These qualities hit home for me, particularly the wishful thinking
bit. How many times have I attacked a group, hoping the opponent
overlooked my plan? How many times have I been drawn into a
local battle, ignoring the bigger picture?

After reading How Not to Play Go, my game improved immensely.
One of the biggest things I had to correct was the visceral feeling

that capturing the opponent’s stones was the shortest path to
victory. In chess and checkers, that’s true: in Go, it’s not.
Capturing stones is helpful, but it’s not the victory condition.

Securing territory is the goal of Go, and very often, you can do that
without capturing the opponent’s stones at all. That lesson took a
while to sink in: capturing stones feels good, even if it’s actually
counterproductive.

Proverbial Wisdom

Aphorisms are very common teaching tools in Go. Since the game is
so complex, rules of thumb help players remember how to play in
common situations.

One of the earliest examples of this teaching approach is “The Ten
Golden Rules of Go,” which are attributed to Wang Jixin, who
played sometime during the Tang dynasty, which ruled in China
from roughly 600 to 900 CE:7

1. “The greedy do not get success.”
2. “Be unhurried to enter the opponent’s territory.”
3. “Take care of oneself when attacking the other.”
4. “Discard a stone to gain sente.”
5. “Abandon small to save big.”
6. “When in danger, sacri�ce.”
7. “Make thick shape, avoid hasty moves.”
8. “A move must respond to the opponent.”
9. “Against strong positions, play safely.”

10. “Look for peace, avoid �ghting in an isolated or weak situation.”

A lot of Go wisdom is like that. There are countless Go proverbs:

The enemy’s key point is your key point.
When in doubt, tenuki (play somewhere else).
There is death in hane (a stone that reaches around to attack).
Beginners play atari.
A ponnuki is worth thirty points.
Nets are better than ladders.
Make a �st before striking.
Sacri�ce plums for peaches.

A rich man should not pick quarrels.
If you ride a tiger, it’s di�cult to get o�. (Don’t start what you’re not willing to
�nish.)

There’s a lot to learn: not only is it wise to learn the proverbs and
why they exist, you need to understand when to ignore them. After
all, one of the proverbs is “Don’t follow proverbs blindly.”

There are also proverbs that apply to beginners. My favorite is
“Only after the tenth punch will you see the �st,” which is usually
followed by “Only after the twentieth punch will you be able to
block it.” In my experience so far, that’s very true: skilled players
can attack me in ways I can’t even recognize.

I have a lot to learn.

“Five Stone” Questions

Almost a month into learning Go, I found an essay by Sam Bleckley
that described his experiences learning the game.8 In the essay, Sam
relayed the advice of a friend, who suggested that he ask himself
four speci�c questions about the situation on the board before
placing a stone:

1. Can I ensure one of my groups lives? (By forming two eyes, connecting, etc.)
2. Can I kill one of my opponent’s groups?
3. Can I secure my territory?
4. Can I invade my opponent’s territory?

Those four questions capture the essence of the four major
priorities in Go: live, kill, secure, invade. By working through the
questions in that order before you make a move, you’ll immediately
gain “�ve stones” in strength by making better decisions and
avoiding poor tradeo�s.

This is a very e�ective technique. It’s easy to memorize and recall
a list of four priorities. By asking yourself a few simple questions
before you play a stone, and by considering the highest-value moves

before lower-value moves, you ensure that your decisions in the
moment correspond to your true priorities.

Go requires making decisions with incomplete information in a
changing environment, so techniques like this are very useful.
Questions like these provide structure and logic in uncertain
circumstances. Even better, it’s possible to indentify and use “�ve
stone” questions in other areas of your life. Whenever you �nd
yourself in a situation that requires making decisions with
incomplete information, assigning priorities, and accepting
tradeo�s, it’s very likely there’s a simple, obvious set of “�ve
stone” questions that can help you make better decisions.

Reaching the Twenty-Hour Mark

Based on my notes, after about a month of study, I’ve reached the
twenty-hour mark. Where am I, and what have I accomplished?

According to the database in SmartGo, I’ve solved around 150
ranked problems, and I’ve progressed to the 18 kyu set. I’ve played
thirty-three games, and I currently have a four-stone handicap
against the AI.

I’ve also completed the �rst volume in the Kseido Graded Go
Problems series, which are rated 30 to 25 kyu. I’m in the middle of
the second book, which is rated 25 to 15 kyu, so it’s safe to estimate
I’m somewhere in the 18 to 20 kyu range. Not bad.

Reviewing the Method

Let’s review the core of the method I used to learn how to play Go:

I learned the basic rules of the game.
I purchased a goban, stones, and several books on Go strategy aimed at beginners.
I found several ways of studying the most important strategic principles by
working on ranked Go problems, both in a computer program and in books.
I focused my initial practice on solving ranked problems, repeating the exercises I
couldn’t answer or explain on the �rst try.

I practiced problems and played games until I hit twenty hours. At that point, I was
comfortably solving 20 kyu problems, an improvement of �fteen ranks from the
beginner rank of 35 kyu.

Where I’m Going from Here

I have mixed feelings about Go. I’ve learned enough about the
game to appreciate just how deep it is and how far I am from
mastering it. I’ve progressed considerably since I started, but to be
truly good at the game, I have a very long way to go.

On the other hand, my leisure time is limited, and Go seems to
require the same sort of intense, focused concentration that writing
and programming demand. While Go can be fun, at the end of a
long day, Go feels a bit too much like work.

In addition, full nineteen-by-nineteen games can take over an
hour to complete, and it’s not very polite to human players to have
to quit the game if family duties call. So far, most of my games
have been played against the computer, since it’s always available
and doesn’t care if I have to go do something else for a while.

I’ve grown to appreciate the brain-teaser qualities of Go
problems, so I’ll likely keep doing them when I feel like solving
puzzles. I enjoy Go exercises far more than crossword puzzles,
sudoku, and other similar sorts of games, so my Go programs will
stay on my phone, ready for use when I have a few spare moments.

I’m planning to teach Lela how to play when she’s a little older.
The rules are simple enough for a four-year-old to understand, and I
have fond memories of playing chess with my dad when I was
young. Go is a good way to teach important skills like analysis,
strategy, and tradeo�s, and I think we’ll have a lot of fun playing in
the years to come.

Other than that, I don’t have a burning desire to spend more time
mastering Go. I’ve learned enough about the game to satisfy my
curiosity, and continuing to progress to mastery isn’t a major
priority.

That’s perfectly okay. There’s no universal law that says you
have to master everything you ever learn. Life requires tradeo�s,
and there’s nothing wrong with exploring something new, learning
a lot, and then deciding to explore something else.

You don’t have to be a black belt in everything to live a
satisfying life.

8

Ukulele

Lesson: Isolate, Practice, Repeat

Today, like every other day, we wake up empty and frightened. Don’t open the door to the
study and begin reading. Take down a musical instrument. Let the beauty we love be what

we do. There are hundreds of ways to kneel and kiss the ground.
—RUMI, THIRTEENTH-CENTURY PERSIAN POET

For supplementary images, video, and commentary about this chapter, visit
http://first20hours.com/ukulele.

A few years ago, I read a thought-provoking set of books by Tom
Hodgkinson titled How to Be Idle (2005) and The Freedom Manifesto
(2007). Hodgkinson’s thesis, in a nutshell, is that we work too
much, and all stand to bene�t by slacking o�. Instead of pushing
ourselves to the limit, we should instead learn to relax, kick back,
and not take everything so seriously.

The books are primarily a call to ignore consumer culture and
careerism. Instead of pursuing material overabundance, Hodgkinson
recommends being content with modest means and returning to the
pursuits of simpler times: gardening, cooking, and playing music.

In The Freedom Manifesto, Hodgkinson recommends learning to
play the ukulele:

This four-stringed marvel is very cheap, very portable, and very easy to play. It is
therefore even more punk than the guitar. Here are the three chords you need to
play most songs: C F G

Get an ukelele, and you will never be bored again.

http://first20hours.com/ukulele

Hodgkinson’s advice resonated with me. At the time, Kelsey and I
were living in a 340-square-foot studio apartment on New York
City’s Upper East Side, and we were both working a lot, hustling to
progress in our careers and pay the insane Manhattan rent. A
diversion would be welcome, and learning to play the ukulele
sounded like great fun.

In high school, I was involved in every music group my school
o�ered. I already mentioned that I learned to play the trumpet, but
I also sang in the choir, and really enjoyed it. Once I left for
college, however, I stopped doing anything musical, and
Hodgkinson’s book reminded me of how much I missed it.

Part of the problem is that trumpets are loud, and not very fun to
play by yourself. I was busy enough with other things and wasn’t
interested in searching for a band to join. In addition, you can’t sing
and play the trumpet at the same time, as you can with a guitar,
piano, or ukulele.

After a little research, I ended up purchasing a Washburn Oscar
Schmidt OU5 Concert Ukulele. It’s made of Hawaiian Koa wood,
sounds nice, and was reasonably priced: between the ukulele and
the case, I spent about $175.

When the ukulele arrived, I plucked the strings for a bit, but I’d
never played a stringed instrument before, aside from a very brief
experiment with a cheap guitar in college. Without a good idea of
how to get started, other matters took priority, and the ukulele sat
in the closet beside the guitar, collecting dust.

Ukulele Hero

My interest in playing the ukulele was rekindled when Kelsey and I
welcomed Lela into the world. It’s amazing how having children
shifts your priorities overnight. All of a sudden, I was working less
in favor of spending time at home, and I started thinking about
music again.

One of my best friends, Nate Siebert, plays his guitar for his sons,
Jackson and Finley, every night before they go to bed. They love it,
and over the years it’s evolved into a consistent, calming ritual.

As an added bene�t, the music is quite likely to be good for them:
early exposure to music has been linked over the years to a wide
range of measures associated with cognitive development. It’s not
clear precisely how music helps little brains develop, but it does.1

I’d love Lela to grow up in a home where playing music is a
common event, and I’m all for doing what I can to help her develop
into an intelligent, happy little girl. Learning to play the ukulele
suddenly seems like a very good use of time.

Meet My New Axe

I already had an ukulele, but another instrument has caught my eye.
Kelsey’s cousin, Erik Smith, happens to be a self-taught master
woodworker who makes �ne instruments. Erik’s company, Crow
Hill Guitars,2 specializes in creating handcrafted custom acoustic
and electric guitars, and Erik exhibits them at music festivals all
over the United States.

Erik decided to try his hand at making his �rst tenor ukulele.
Meet the Grizzly:

This ukulele is one of a kind: the body is crafted from African
mahogany and wenge, with inlays of Spanish cedar, Indian
rosewood, curly redwood, and curly maple. A white mother-of-pearl
bear claw is embedded in the fretboard, and abalone bear claws
adorn the sound hole on the face. I wanted the Grizzly as soon as I
saw it.

There was a catch, though: Erik’s instruments cost thousands of
dollars. They’re worth every penny in terms of quality, but was I
serious enough about learning to play to justify the expense?

I decided to purchase the Grizzly for two reasons. First, playing
on a high-quality instrument, even as a beginner, gives you an
important psychological boost: you sound better right away.
Compared to the Grizzly, my old Oscar Schmidt sounds downright
dull. As a result, playing on the Grizzly is way more fun.

Second, it would be a complete embarrassment to have an
instrument this nice in my house and not be able to play it. In
addition, if I don’t learn to play, I’ll have wasted a good chunk of
money. I’m now invested substantially in the outcome, so it’s more
likely I’ll make time to practice, making this purchase a great
example of using a precommitment to change behavior.

Supporting Gear

Along with the Grizzly, I picked up two other important pieces of
equipment:

Snark SN-6 Ukulele Tuner—this inexpensive electronic tuner clips onto the head of
the ukulele, making it easy to keep each string tuned to the proper pitch.
D’Addario J71 Pro-Arte Ukulele Strings, Tenor—extra hard tension nylon classical
guitar strings that give the ukulele a fuller sound and make it easier to strum fast.3
If a string breaks, you have to replace it before you continue, so it’s good to have a
few extra sets on hand, just in case.

Along with the equipment, I purchased three ukulele books:

Absolute Beginners Ukulele, Omnibus Edition by Steven Sproat (2010), a beginner
tutorial
Fretboard Roadmaps—Ukulele by Jim Belo� and Fred Sokolow (2006), which covers
advanced techniques
The Daily Ukulele by Jim Belo� and Liz Belo� (2012), a reference book that
contains a wide variety of songs ranging from folk to classic rock

An Intriguing Challenge

Shortly after I purchased the Grizzly, I got an e-mail from my friend
Chris Guillebeau, author of The $100 Startup and The Art of Non-
Conformity. Each year, Chris hosts a very fun conference called
World Domination Summit. Imagine bringing together over a
thousand people who are each doing crazy/odd/interesting things in
the same general area: that’s WDS.
Chris had originally invited me to speak about The Personal MBA,

but ten days before the event, another speaker canceled their
session at the last minute. Chris knew I was working on this book,
so he sent me a note: was I willing to lead a second session about
rapid skill acquisition?

Sure … why not?
World Domination Summit was about to become the �rst time I

presented these ideas in public.

I was drafting the new presentation, which focused on the ideas
we discussed in chapters 1–3, when I received another e-mail from
Chris, which he sent to every speaker before the event. Among
other things, Chris’s note contained this advice: “If you can do
something special, do it. … Anything you can do to surprise [the
participants] will stand out and go far.”

That got me thinking … playing the ukulele would be a great way
to demonstrate how these ideas work. Could I learn how to play in
ten days?

It will be a stretch, but I think I can do it. I replied to Chris and
accepted the invitation.

I now o�cially have ten days to learn how to play the ukulele.

Crazy for You

With only ten days before my �rst public performance, I have to
make a plan, and fast. This isn’t a commitment I can easily back out
of, and it will be the �rst time in twelve years I’ve done anything
musical in public.

After I commit, the part of my brain that wants me to look good
in front of other people naturally kicks in. What am I thinking? Am
I nuts?

What makes this crazy idea even more nerve-racking is that I’ll
be by myself: just me and the Grizzly. I won’t have a band to back
me up, and if I make a mistake, everyone will know. If I’m
horrible, everyone will see and hear just how bad I am.

Just thinking about that possibility makes me nervous. I’m
considering speaking, playing an instrument I’ve never played
before, and possibly singing in front of people I don’t know. Yikes!

All the more reason to know what I’m doing before I take the
stage. I have a lot of work to do, and the clock is ticking.

De�ning Success

The �rst part of my target performance level is set: I’m going to
play the ukulele in public in ten days. That’s a good start, but how
can I make that more speci�c?

I took out a notebook and sketched what I wanted the session to
look like. I have an hour to talk. If I explain the main ideas in thirty
minutes or so, that leaves twenty minutes for playing and ten
minutes for questions.

I’m going to plan on playing for roughly twenty minutes. What
do I want to focus on?

The talk isn’t a concert. It’s primarily a teaching session, so I
want to focus on using whatever I play to illustrate a few
interesting and important ideas about rapid skill acquisition. It’d
also be nice to highlight some interesting things about music.

As I sketch, I start to get ideas … this is going to be fun.

The “Four Chord Song”

As I was thinking about what I might want to play, I remembered a
funny video of a band I saw several months prior.

Axis of Awesome4 is a comedy rock band based in Sydney,
Australia. The group is most widely known for the “Four Chord
Song,” a medley of past and present pop hits, which has been
viewed over 24 million times on YouTube.

Here’s the gag: as the band demonstrates, pretty much every
popular song of the past several decades is made up of the same
four chords. Play the chords over and over again, overlay some
random lyrics, and you have yourself a sure�re pop hit.

No artist is immune: Elton John, The Beatles, John Denver, U2,
The Red Hot Chili Peppers, Bob Marley, Beyonce, Lady Gaga. Even
the venerable Australian folk song “Waltzing Matilda” makes an
appearance. The song goes on for �ve minutes, introducing a new
hit every �ve to ten seconds, accompanied by gales of laughter and
applause from the audience.

The “Four Chord Song” is simultaneously hysterical and mind-
blowing. By showing the underlying structure of well-known songs,
it illustrates that popular music does indeed have a formula. There
are many possible variations on the theme, but the human mind
seems to gravitate to that particular method of constructing a
catchy tune.

Here are the four chords in the “Four Chord Song”:
G / D / Em / C

I’m going to learn how to play the “Four Chord Song.” If the gag
is true, I’ll also be simultaneously learning how to play every pop
song ever written. Sounds like an e�cient place to start!

As it turns out, these four chords are very easy to play once you
know how the instrument works. Let’s examine the ukulele to see
what we’re dealing with.

Anatomy of an Ukulele

Ukuleles have four strings, which extend along the length of the
instrument’s body. The long piece that sticks out from the body of
the instrument is called the fretboard.

Just above the fretboard is a piece of wood called the head or
headstock. Embedded in the head are tuning pegs, which securely

hold the top end of the instrument’s four strings. These strings
extend from the head, over the fretboard, past the open sound hole,
to the bridge, which is near the bottom of the ukulele’s body. The
bridge keeps the strings in place, strung tightly over the sound hole
and fretboard.

The ukulele is traditionally played by wrapping the left hand
around the fretboard, and using the right arm to hug the instrument
close to the chest. The player strums the strings with the �ngers of
their right hand (usually the right index �nger or thumb), while the
�ngers of their left hand press down on the fretboard to change the
pitch of the strings.

Tuning

Each string has a tuning: a pitch that’s made if you pluck the string
without pressing down anywhere on the fretboard. The pitch of
each string is adjusted by turning the tuning pegs. If a tuning peg is
turned to add tension to the string, the pitch moves higher. If the
tuning peg is turned to reduce the string’s tension, the pitch moves
lower.

Here’s the most popular default tenor ukulele tuning:5

4th string (bottom) = G (196 Hz)
3rd string = C (261.6 Hz)
2nd string = E (329.6 Hz)
1st string (top) = A (440 Hz)

Tuning the ukulele is very easy if you have a good tuning device.
That’s where the Snark SN–9 comes in. When you clip it to the
headstock, turn it on, and pluck a string, the tuner measures the
string’s pitch, translates the frequency into a note, and shows you if
the pitch is �at (slightly below) or sharp (slightly above) the proper
frequency. When you have the correct pitch, a signal light appears,
and you move on to the next string. When all four strings are in
tune, you’re ready to play.

Proper tuning is very important: if the strings aren’t tuned
correctly, the ukulele sounds o� in a way that even people who
claim to be tone-deaf can notice. The more accurate the tuning, the
better the instrument sounds.

Notes and Chords

If you want to play a single note on the ukulele, all you need to do
is pluck a string, which causes it to vibrate over the sound hole in
the body, creating sound. If you press down on the fretboard as you
pluck a string, the string becomes temporarily shorter, and as a
result, vibrates faster when you pluck it. The higher the frequency
of vibration, the higher the pitch of the sound.

What makes ukuleles, and other stringed instruments, like guitars
and pianos, interesting is that they’re capable of playing several
notes at the same time. If an ukulele player strums every string
with their right hand, they can play four notes simultaneously. A
skilled player can press the strings on the fretboard in ways that
make the pitches each string generates complement one another,
creating a chord.
Chords are what make stringed instruments sound so rich and

vibrant. By playing combinations of notes instead of single notes,
the player can create both melody and harmony at the same time.
In a sense, chords allow the player to become their own
accompanist.

Even better, unlike the trumpet, clarinet, �ute, or saxophone,
stringed instruments only require the player to use their hands.
With enough practice, it’s possible to play complex chords and sing
at the same time, which is why instruments like the guitar and
piano are so popular with vocalists.

Playing Chords

Since I’m starting from scratch, I have a choice to make: I can focus
on learning how to play individual notes by reading sheet music, or
practice playing chords. Since chords are new to me, and I’d like to
be able to sing and play at the same time, I’m leaning in that
direction.
Chord diagrams are visual representations of which strings to

press on the fretboard with the �ngers of your left hand. If you
press the strings in the combination shown in the diagram, you’ll
play the chord.

Here are the four chords in the “Four Chord Song”:
G / D / Em / C

Here’s what these chords look like on the ukulele:

If you hold the ukulele upright, it looks just like the diagrams.
The thick bar at the top of the diagram represents the top of the
ukulele’s fretboard, which is called the nut. Each line below that is a
fret, which corresponds to the raised metal pieces sticking out of the
fretboard.

Frets make it much easier to produce clean-sounding notes when
you press down on the fretboard. When you play, you don’t press
down on the frets themselves: you press down on the spaces
between them. As you press down, the fret below your �nger also
presses on the string, shortening it to a precise length, and altering
the pitch accordingly.
Chord diagrams indicate which strings you need to press down

on, and where you need to press, in order to play certain chords.

The strings are represented by the four vertical lines: the string on
the left is the 4th string, which is the string on the top if you’re
holding the ukulele in playing position. The string on the right is
the 1st string, which will be on the bottom.

The black circles show where to press, and the numbers stand for
which �nger you should use:

1 = index �nger
2 = middle �nger
3 = ring �nger
4 = little (“pinkie”) �nger

According to the diagram, to play a G chord, I’ll need to press
down on the bottom three strings with my index, middle, and ring
�ngers. My index �nger should push on the third string above the
second fret; my middle �nger should be in the same position on the
�rst string, and my ring �nger should press on the second string
above the third fret.

That’s a lot to say, but in practice, it’s easy to do. Once you
�gure out which �nger goes where, playing chords becomes a
standard motor skill: learning what shape your �ngers need to take,
and where you need to push, to create a given chord.

To practice chords, it’s useful to have a set of reference diagrams
that show how to play common chords. A brief Internet search led
me to the “Kiwi Ukulele Indispensable Chord Chart,”6 a
downloadable guide to playing chords on the ukulele. The guide
was created by Mike Dickison, author of Kiwi Ukulele: The New
Zealand Ukulele Companion (2008).

There are many places to �nd chord charts: pretty much every
ukulele book contains a set of chord diagrams. What makes Mike’s
chart unique is that it’s organized by frequency of use. Common
chords, like the chords featured in the “Four Chord Song,” are listed
�rst. Rare chords, like G#KMK4, are listed at the bottom, since you’ll
rarely see them used.

This type of frequency analysis is very, very useful: the power
law applies to music as well. To be able to play songs, you don’t
need to know hundreds of chords. Ten to twelve chords cover most
songs.

Chord Practice

I pick out the diagrams of the chords in the “Four Chord Song,” and
spend some time learning which �ngers go where. When I make the
appropriate shape with my �ngers on the fretboard, I strum all four
strings. It works: I’m able to produce chords that sound nice!

The biggest challenge early on is pressing each string down in a
way that ensures the fret does its job. If you don’t press down hard
enough, the string won’t produce a clear tone. Instead, you’ll get a
very unattractive “buzzing” sound along with the pitch you want,
which is distracting.

Once I learn the four chords, I spend an hour practicing playing
each one, repeating the sequence over and over again:

G … D … Em … C …
G … D … Em … C …
G … D … Em … C …

This is the �rst stage of motor skill acquisition: helping my brain
associate certain thoughts, like the name of a chord, with a pattern
of muscle movements in my left hand. Later, I’ll be able to play an
Em chord whenever I want to, but to get there, I need to practice
making the right shapes with my �ngers, pressing down hard
enough on the fretboard, and switching between the chords in a
sequence.

I’m also practicing before bed, using the same strategy I used to
relearn to touch-type. By practicing before I sleep, I can ensure that
my brain is able to consolidate these movements as e�ciently as
possible.

Strumming Patterns

The next day, I’m able to play all four chords well, and switch
between them at will. Not bad for an hour of practice. Now that I
have some idea of what my left hand is doing, I need to focus on
my right.

While the left hand is busy playing chords, the right hand is
responsible for strumming the strings to produce sound. Up to this
point, I’ve been strumming using a very basic pattern: counting to
four and strumming with each number:

1 2 3 4
1 2 3 4
1 2 3 4

Most songs, when they’re put in musical notation on paper, are
written in what’s called 4/4 time. Without going too far into the
details, the songs in 4/4 time are organized around four strong
beats.

The next time you hear a song, try counting from one to four in
your head in time with the beat. More often than not, you’ll notice
the pattern �ts.

Of course, if every song consisted of playing notes or chords in a
simple, predictable pattern over and over again, music would get
boring very quickly. To add interest and variation to music,
musicians intentionally break this simple pattern of counting by
using a technique called syncopation.

Syncopation means playing in a way that strays from the regular
progression of beats. Here’s what it sounds like: with one of your
hands, tap a simple beat on a �at surface in front of you—a table,
desk, or counter is perfect. Keep the beats strong and regular. As
you tap, count from one to four over and over:

1 2 3 4
1 2 3 4
1 2 3 4

Pretty simple, right?
Now, as you tap the beat, add a twist. Use your other hand to tap

between the beats, like this:
1 and 2 and 3 and 4 and
1 and 2 and 3 and 4 and
1 and 2 and 3 and 4 and

That’s very basic syncopation. The taps on “and” are o� the
standard beat, which adds a bit of variation that makes the rhythm
more interesting.

Skilled musicians spend a lot of time experimenting with
syncopation. Each beat can split into many parts. It’s very common
for beats to be split into four sections, which are counted like this:

1e&a 2e&a 3e&a 4e&a

That’s “one-e-and-a, two-e-and-a, three-e-and-a, four-e-and-a.” The
“e” is long, like in “eagle,” and the “a” is short, as in “ah.”

By emphasizing or accenting certain beats, and by leaving some
beats out entirely, the musician can create all sorts of interesting
rhythms that �t into the song.

This is important to know because the right hand on the ukulele
keeps the rhythm. If I want to be able to do anything aside from
strum on the beat, which is boring, I need to spend some time
�guring out an interesting strumming pattern.

After some experimentation, I settle on a pattern:
1 &a e&a 3 &a e&a

It takes me a while to train my right hand to strum the rhythm,
but I pick it up eventually. First, I play a simple C chord while I
strum. Once I’m comfortable, I start moving through the four-chord
sequence, changing chords on the 1 and 3 beats:

G D
1 &a e&a 3 &a e&a
Em C

1 &a e&a 3 &a e&a

At this point, I’m playing the actual song: I’m hitting the chords
in the correct order with my left hand, and keeping up the
strumming pattern with my right.

For the �rst time, I’m playing a song on the ukulele. It’s simple,
but it works!

I keep repeating the sequence over and over again. Once I’m
comfortable, I close my eyes, and try to play without looking at the
fretboard or strings. I make more mistakes, but I’m able to keep the
song moving, and get back on track when I make an error.

Not bad after only two hours of practice.

Playing and Singing at the Same Time

Now that I’m able to play the chords and keep up the strumming
pattern, I have one more layer to add. Can I �gure out how to sing
and play at the same time?

The “Four Chord Song” is funny because it’s easy to recognize the
songs. Without the lyrics, it just sounds like I’m playing the same
thing over and over again. That’s the point, of course, but without
the words, the song doesn’t make sense.

Over the years, I’ve met many very cool people through my
business. Among the coolest is Derek Sivers, the founder of
CDbaby.com. Derek is an accomplished singer and guitarist, so I
asked him for advice on how to proceed. Here’s what he
recommended:

Memorize the song by just singing �rst! It’s important to separate instrument-
knowledge from song-knowledge. You need to be able to just sing the whole
thing, no instrument in hand. (Voice quality doesn’t matter: sing, hum, whistle,
anything.)

Once you have the song memorized, sing the note-names instead of the lyrics.
Memorize the song like this, eyes closed.

Finally, add the instrument, singing the note-names as you play them on the
strings.

This is a brilliant example of deconstruction: breaking a complex
process into simpler parts. To sing and play at the same time, you

http://cdbaby.com/

have to know the song’s words and melody well enough to
remember them as you play the chords and keep the strumming
pattern going. By separating the song learning from the instrument
at �rst, you ensure you know the song well enough to not have to
think about it too much when you add the instrument.

Once you have the words down, switching the lyrics to the chord
names helps you get a feel for when to change chords as you play.
Since the lyrics have a rhythm of their own, you can use them to
remember when to switch: one less thing to keep track of!

Finally, by singing the chord names in rhythm with the chord
changes and strumming pattern, you’re helping your brain put the
pieces together. If you can keep everything together, switching
from the chord names to lyrics is simple, since you already have
them memorized.

I took Derek’s advice to heart, and begin memorizing the words
to the “Four Chord Song” by listening to it over and over again to
pick up the tune. I then practiced the words by writing them down
in a notebook, then repeating them over and over from memory.

Then, I played the song on the ukulele while whistling the tune,
keeping the names of the chords in my head. It was easy to notice
when to change chords, and suddenly, I began playing and whistling
at the same time.

Adding the lyrics came easier than I expected. Every once in a
while, I forgot the words or messed up a chord, so I stopped, went
back, and tried again.

After �ve hours of practice, I’m able to play and sing my �rst full
song. It’s rough in spots, but all of the pieces are there.

Five days until showtime. I’m able to perform well enough by
myself, but how will I hold up when people are watching me?

Making It Automatic

In order to make sure I’m able to play when it counts, the
remainder of my practice on the song is pure repetition, always
right before bed. The goal is simple: I want to make changing
chords, maintaining the strumming pattern, and singing the words
take as little mental e�ort and attention as possible.

This part of practice isn’t glamorous, but it’s important.
Everything up to this point has been part of the cognitive phase of
motor skill acquisition: analyzing, deconstructing, and
experimenting. Now, I need to push into the associative phase, and
begin to allow my muscles to take over without conscious thought.

Every day, I play and sing the song over and over again: I’ve lost
count of how many times. My chord transitions are becoming
smoother, the strumming pattern is getting more consistent, and
I’m remembering most of the words. A few of the transitions
between songs are tricky, so I spend extra time practicing them.

Before I know it, it’s time to travel to Portland. I won’t be
traveling alone: this time, the Grizzly is coming with me.

Showtime

My performance is on the last day of the conference. The good news
is that the schedule gives me at least two more hours to practice.
The bad news is that it gives me two days to feel anxious about how
it will go.

The day of the talk, I tune the Grizzly and practice one last time
an hour before my session. Then, ukulele in hand, I walk to the
venue.

I wasn’t sure how many people to expect, so I’m relieved that it’s
a relatively small room. I’m not sure how I’d handle an auditorium
right now.

The place �lls up, and attendance is great. The room seats forty,
but more people come, so a few folks are standing on the sides. The
energy in the room is high.

After explaining my research and the method, I pull out the
ukulele, and everyone is visibly excited. I’m trying my best not to
be visibly terri�ed.

Here goes nothing. I start to play, then sing.
It went really well: way better than I expected. It wasn’t a

Carnegie Hall–worthy performance, to be sure, but I played the
entire song without screwing up the chords, missing a beat, or
forgetting the words. The audience smiled, tapped their feet,
laughed at the lyrics, and applauded at the end.

My training paid o�: instead of looking at the fretboard or the
strings the entire time, I was able to look out into the crowd and
enjoy the moment.

Finger Picking

After the song was over, I showed the audience another trick I
�gured out while I was practicing: you can play songs that sound
complicated if you pluck individual strings in a sequence instead of
strumming them all at the same time. The chords are exactly the
same.

This technique is called finger picking, and there are many ways
you can do it. The pattern I demonstrated is very simple: plucking
the 1st string, 4th string, 2nd string, and 3rd string on the beat, in
that order. By repeating this pattern while the left hand plays
chords, each note naturally complements the next. The result sounds
nice and complex, even though it’s not really any more complicated
than strumming.

The talk was a success, and fun besides. I’m glad I took a risk,
pushed myself, and practiced well. Going from zero to �rst public
performance with ten total hours of practice isn’t bad at all.

One-Four-Five

By chance, I happened to run into a fellow WDS participant, Melissa
Dinwiddle, outside the main auditorium. Melissa’s an artist, and she
just so happened to bring her ukulele with her, so we broke out the
instruments and jammed for a while.

One of the things Melissa taught me that day was a song structure
called the “12 bar blues,” which is based on a chord progression
referred to as one-four-�ve.

Without getting into too much music theory, every note has an
associated chord, as well as a “family” of chords that complement
the root. If you can play the root chord, as well as the chords in the
associated family, you can suddenly play thousands of common
songs.

Take, for instance, “Twinkle, Twinkle, Little Star.” The entire
song can be played using three chords, which follow this
progression:

C / F / G

Here are the chord diagrams:

In this case, C is the root, or I chord. F and G are the other two
chords in this family. F is the IV chord, and G is the V chord.

Using only these three chords, you can play all sorts of fun songs,
like:

“The ABC Song”
“Frosty the Snowman”
“Elmo’s Song”

That means I can �gure out how to play children’s songs for Lela
when I get home, as well as some fun blues songs.

My next ten hours of practice are devoted to exploring all of the
new songs I can play. Between working through The Daily Ukulele
(Belo�, 2010), picking up new strumming patterns from the Absolute
Beginners Ukulele (2009), and learning more basic music theory from
Fretboard Roadmaps—Ukulele (2006), the hours �y.

Tom Hodgkinson was right: if you pick up an ukulele, you’ll
never be bored again.

Reviewing the Method

Let’s review the core of the method I used to learn how to play the
ukulele:

I obtained an ukulele, strings, a tuner, and other necessary equipment.
I decided to begin by focusing on learning the most common chord progressions
and strumming patterns, which allowed me to play thousands of popular songs.
Once I was able to play chords and strum without looking at the fretboard or
strings, I practiced until I could maintain the pattern and change chords without
thinking about it.
When I was comfortable with basic chords and strumming patterns, I began
learning songs by humming along as I played, learning where the words and chord
changes overlapped, then adding lyrics until I could sing and play at the same time.
I experimented with �nger picking the same chord progression instead of
strumming, which allowed me to play more complex songs.
I learned the I, IV, V chord progression, which helped me �gure out how to play
even more songs.

Where I’m Going from Here

I love playing the ukulele. Between The Daily Ukulele Songbook and
looking up songs online, I can �gure out how to play pretty much
any song I want. Some chords are harder than others, and there are
thousands of strumming and �nger-picking patterns to learn, which
will keep me busy for a long time.

One of the best parts about playing the ukulele is that it’s low
pressure. Aside from my initial experiment, I’m not playing to
prepare for a performance, or because I expect to be a professional
musician in the future. When I pick up the ukulele, I can just relax
and �ddle around for a while, learning a new song, �nger-picking
technique, or strumming pattern.

Lela’s getting old enough to remember songs now, and my old
dusty Oscar Schmidt is coming in handy: it’s now Lela’s ukulele,
and it serves as a decoy while I practice, or as our primary
instrument when she wants to sit in my lap and strum the strings as
I change chords. Now that I can play songs she recognizes, she asks
to play the “ukuyaya” before we go to bed.

It’s nice to have music in our life.

9

Windsur�ng

Lesson: Environment Matters

We wrestle not with �esh and blood, but with epoxy, carbon �ber, mono�lm, and our own
egos, dreams, and indomitable wills.
—CHRIS ZEITVOGEL, WINDSURFER

For supplementary images, video, and commentary about this chapter, visit
http://first20hours.com/windsurfing.

I’m in the middle of the lake, trying desperately to raise my sail.
It’s di�cult: the muscles in my arms, legs, and back are screaming.

A strong northwest wind is kicking up small crested waves,
bouncing my sailboard back and forth beneath me. I let the sail
drop back down into the water and pause, taking a moment to rest
and adjust to the rocking of the board beneath my feet.

I look to the west: a storm is blowing up, pushing dark clouds
over the mountains. It’s time to head back in.

I reach down, retrieve the uphaul line, then pull, hoisting my sail
out of the water for at least the thirtieth time in the past thirty
minutes. I hope I’m able to return to land before the storm hits.

It will be close … I’m not very good at steering this odd
contraption, but I have to learn. Paddling back to shore gets old
fast.

Life on the Water

http://first20hours.com/windsurfing

I have very fond memories of summers spent on the water. Growing
up, I was very involved with the Boy Scouts of America, and spent
several summers serving as a sta� member at two camps in
Northern Ohio: Camp Firelands and Camp Avery Hand.

During my last summer at camp, I had the honor of serving as
assistant director of aquatics under the legendary “Aqua” Bob
Sliney. Bob traditionally leads the pool program: swimming,
lifesaving, and mile swim. I was responsible for watercraft activities
of all kinds: canoeing, rowing, sailing, and motorboating.

I loved every minute of camp. Each day, I got to spend most of
my time on the water, teaching younger Scouts how to enjoy using
watercraft safely. It was a challenging and exhausting job in all of
the best ways.

When I went o� to college, I left the water behind. My �rst
corporate job in Cincinnati was time-consuming, and the Ohio
River, the closest large body of water, isn’t ideal for recreational
boating. Later, when Kelsey and I moved to the middle of New York
City, the closest we came to boating was a ride in the gondola in
Central Park. When we settled in Colorado, I felt sure my boating
days were done: after all, this part of the world isn’t exactly known
for its wealth of water.

Recently, however, I was able to arrange access to a small private
lake just north of town, a few miles from home. I’m giddy: it’s the
�rst time in years I’ll be able to spend time on the water.

What should I do �rst?

Catching the Windsur�ng Bug

My �rst idea was to take up rowing: the lake is big enough for
rowing sculls. Unfortunately, standard rowboats are large and
bulky, and even the smallest sculls are very long and relatively
fragile, which is a pain, since I don’t have the ability to safely store
large or long craft at the lake.

The same problems apply for sailboats, with the added downside
of expense: even basic equipment can cost a pretty penny. Aside
from the mooring complications, I’d rather not drop ten grand on
gear.
Canoeing is easier and less expensive, but it’s not very fun to do

by yourself: the length of most canoes makes them better for two-
person paddling. Motorboats and Jet Skis are out of the question,
since the lake’s owners restrict motors to 9 horsepower or less, and
I prefer human-powered craft in general.

As I researched my options, I chanced upon a video shot by James
Douglass, a marine biology professor at Florida Gulf Coast
University. In addition to his biology expertise, Jim is an
accomplished windsurfer who publishes excellent information about
the sport on his personal blog.1

In the video, Jim rigs up a Formula-class sailboard with a
waterproof HD video camera, which is attached to the end of the
sail’s boom, capturing all of the action at once.2 He then �ies over
the water, jumping small waves and executing fast, impressive
turns.

I was hooked, and I watched that video several times in a row.
I’ve never been on a sailboard before, but suddenly I wanted to try.

Windsur�ng meets all of my criteria: I can do it by myself, and
the necessary gear isn’t huge or unwieldy. It’s also, based on my
cursory research, not exorbitantly expensive: I’ll need to buy gear,
but a basic setup won’t break the bank.

Windsur�ng looks fun, but before I jump in, I want to be sure it’s
safe. I’m not by nature an adrenaline junkie or thrill seeker. If
windsur�ng turns out to be dangerous, I’d be just as happy doing
something else.

If I’m going to sailboard, I want to know the risks before I
commit. What can go wrong?

Is Windsur�ng Dangerous?

Windsur�ng is often labeled an “extreme” sport, but the degree of
extremity depends on what type of sailboarding you want to do. On
�at, enclosed, small lakes of the type I’ll be learning on, it’s more
intense than piloting a small sailboat, but it’s not crazy.

Windsur�ng in the ocean, on the other hand, carries much more
signi�cant risks. Waves crashing into the shore make launching
more di�cult, and losing your rig far from shore is a very big deal.
The ocean adds elements of fun, like jumping waves, but it also
adds risks. Compared to ocean sailboarding, windsur�ng on an
inland lake is very safe.

No matter what kind of sailboarding you do, however, there are
signi�cant risks, most notably, drowning and hypothermia. There’s
no getting around it: when you’re standing exposed on a �oating
piece of Styrofoam in the middle of a large body of water, holding a
large sail upright by hand on a windy day, bad things can happen if
you’re not prepared.

The risk of drowning has two primary factors: injury and
exhaustion. If you fall in a way that results in a major limb injury or
concussion, you risk losing consciousness in the water. If you get so
tired you can’t get back on the board or make it back to shore,
drowning is possible.

The best way to prevent drowning is to (1) wear a personal
�otation device (often called a PFD or life jacket); and (2) always go
out with someone close by, either on the water or on shore. If you
get into trouble, you want someone nearby who can help.3

Hypothermia can be just as deadly. In cold, wet, and windy
conditions, your body loses heat very quickly. Once your core body
temperature drops below ninety-�ve degrees Fahrenheit (thirty-�ve
degrees Celsius), your heart, lungs, and nervous system begin to
shut down, leading to death unless core body temperature is

restored to normal operating levels, which are between ninety-eight
and one hundred degrees Fahrenheit.

What makes hypothermia particularly dangerous is that it occurs
gradually. As core body temperature drops, symptoms like
shivering, confusion, loss of coordination, and fatigue set in,
impairing physical dexterity and judgment. If you’re relying on
good judgment and physical skill to get you home, the onset of
hypothermia is a major threat that’s all too easy to overlook.

At water temperatures above sixty-�ve degrees Fahrenheit,
hypothermia isn’t a huge risk factor. Below that threshold, it pays
to ensure you have insulation before you risk entering the water.
That’s where wet suits come in.

Wet suits are made of thin and �exible materials that insulate in
water, like neoprene. Modern wet suits are rated in terms of
millimeters of thickness, and are usually designed to be thicker in
the torso than the limbs. This design serves two purposes: more
insulation around the torso preserves body heat more e�ectively,
while less material around the limbs preserves range and ease of
motion. For windsur�ng in cold conditions, you need both
insulation and �exibility.

A combination of two wet suits provides the widest range of
protection in common weather conditions. A short-sleeve “shorty”
wet suit, which keeps the arms and legs exposed, is best for warmer
temperatures: 3 millimeters in the torso and 2 millimeters in the
limbs (3/2) is su�cient. In water temperatures below sixty-�ve
degrees, a full-body 5/4 wet suit with boots, gloves, and a neoprene
hood or hat is best.4
California’s coastal areas are popular windsur�ng destinations, so

the state’s department of boating and waterways put together a
handy list of safety tips:5

1. Consider local weather and tidal forecasts.
2. Always advise someone of where you plan to sail and when you expect to return.

3. Wear clothing that suits the conditions.
4. Wear a U.S. Coast Guard-approved life jacket with a whistle attached.
5. In hot, sunny, humid conditions, drink plenty of water.
6. Check your equipment for signs of damage or fatigue.
7. Sail with a buddy.
8. When the winds are o�shore, sail no more.
9. Cold can kill. The �rst time you shiver, return to shore and warm up.

10. Always stay with your board—never try to swim ashore.

The state also provides a simple prelaunch checklist:

Before Launching …

1. Double-check your safety leash.
2. Be wary of dark clouds on the horizon—storms strike fast.
3. If in doubt, don’t go out.
4. A smart sailor will always try to take the safest course of action before rescue is the

only way out.

That’s common sense, but it’s important. Windsur�ng is fun.
Dying is not. With a bit of preparation and planning, however,
windsur�ng’s major risks can be minimized.

Where Do I Start?

As you might expect, northern Colorado is not a major windsur�ng
hot spot. There’s enough wind to make it worthwhile if you have a
place to practice, but in contrast to major destinations like
Washington’s Columbia River Gorge, local winds are variable and
unpredictable, not strong and sustained.

In addition, large bodies of accessible water aren’t very common
in northern Colorado. Since much of the Front Range is high-
altitude, semiarid steppe, large bodies of water like lakes don’t
form naturally. Most of the “lakes” in the area are arti�cial
reservoirs designed to hold water for local farmers, fed by rivers
like the wild and scenic Cache La Poudre, which carries snow runo�
down from the mountains to the plains below.

As a result, the local geography supports a very developed white-
water kayaking scene, but not much windsur�ng. I don’t happen to
know anyone who windsurfs on a regular basis, and it doesn’t look
like there are any local retailers that sell boards or equipment.
Likewise, after searching for instructors in the area, it looks like I’m
on my own. The closest place I can �nd that gives lessons is in
Denver, an hour’s drive. That makes scheduling tricky: some days
it’s windy, and some days it’s not, so scheduling a lesson would
carry a signi�cant risk of cancellation.

While it would be ideal to start with some personal instruction,
work and family responsibilities are keeping me close to home for
now. I’m con�dent that if I can get the right equipment, I can pick
up the technique once I’m on the water.

That’s a big if: how do I buy gear if there are no stores close by?
From what I understand, windsur�ng boards and sails are bigger
than the packages companies like FedEx and UPS usually ship.

If I can’t get the appropriate equipment, this project will be over
before it begins.

Gearing Up

My �rst source of information is Jim’s website, which has a ton of
how-to posts for beginners. One of the �rst essays I read was a post
titled “Top 18 Windsur�ng Questions Answered,”6 which includes a
tutorial on necessary equipment.

From the Q&A, it looks like I’ll need, at minimum, a board, a sail,
a PFD, and a wet suit. I read every windsur�ng post on Jim’s site,
made a list of various pieces of gear that looked useful, tried to edit
them down to what I believed were the two best options, then
wrote Jim an e-mail to say thanks, as well as ask for his advice.

Of primary importance was the type of board and sail I should
get. Jim’s video of �ying around on a Formula-class board was
impressive, and I’d love to get to that point, but I’m not sure if

starting with a Formula board is a good idea. The other option,
from my research, is a well-rounded board called the Rio, which is
manufactured by a company called Starboard. The Rio’s developed
a reputation of being very beginner-friendly, as well as a good
general-purpose board for most conditions: it won’t �y as fast as a
Formula, but it will perform in a wider range of conditions.

I didn’t know what to do, so I asked Jim for his advice:
I’m completely new to windsur�ng—haven’t stepped on a board yet. I was
hoping you could give me some advice on getting started.

I’m looking to pick up a full set of gear, and I’m trying to decide between the
Starboard Rio Medium and the Starboard Formula 167.

The Rio sounds like a good beginner board, but I’d like to learn to [hydroplane]
as quickly as possible. I’ll only be windsur�ng on �at water, and I’d like to be
able to sail in less wind (4–5 knots). Formula boards, from what I’ve read so far,
[hydroplane] more quickly and work better in less wind.

Here’s my question: is it insane to learn on a Formula board? I have a very
high tolerance for early frustration, and I’d rather buy a single board vs. multiple
boards. If I learn on a Formula, do I run a signi�cant risk of breaking the
equipment or getting injured?

Thanks for any advice you can pass along—I appreciate your help!

An hour or so later, Jim replies:
1. The thing about formula boards being better in light winds is misleading.
They do have the potential to plane in lighter winds than any other board (7–8
knots), but you have to be a very good sailor �apping a huge 11–12 square meter
sail to tap into that potential. And a formula board when it is NOT planing is a
dog because it’s so short and wide and has no daggerboard. For non-planing
conditions (realistically, anything under 10 knots) a longer narrower board with
a daggerboard (Like the Rio M) is a lot faster and easier to navigate than a
formula board.

2. You are unlikely to injure yourself trying to learn on a formula board, unless
it’s hurting your back trying to uphaul too big a sail. The reason you are
unlikely to injure yourself is that you probably won’t be able to make the board
go at all! You could very well injure the board however, because formula boards
have a thin skin that will ding easily when you drop the rig during a fall.
3. The Rio M is probably the best board ever for fast learning and getting

comfortable planing and using the foot straps, although the GO 171 would also
be good.
4. My strategy would be to have a few di�erent sized sails so you can be

pushing the limits of how much power you can handle regardless of the wind
strength. For the �rst steps and for high winds later on, you’re going to want a

sail smaller than 6 square meters … I have a windsur�ng calculator that will
give you an idea of about what size sail you’ll need to have a chance of planing
in a given wind strength.7
5. Your best chance of planing is going to be with smaller sails when the wind

is strong, because it requires less technique to plane with a small sail in strong
wind than with a big sail in light wind.

This type of information is absolute gold. Jim cleared up several
misconceptions I had about the type of board I need to start on, as
well as the type of sails I should start with. Jim’s kindness in
sharing his advice saved me several thousand dollars and a lot of
frustration.

Jim also introduced me to Isthmus Sailboards,8 a shop in
Madison, Wisconsin, that sells windsur�ng gear online. I called
Isthmus, and Gary Stone, one of the owners, helped me put together
a list of the gear I’d need to get started.

Here’s what I ended up ordering:

Starboard Rio M board
Chinook Powerglide 4.7 square meter sail
Chinook Sport AL boom
Chinook 400cm mast
Chinook US mast extension
Chinook US 1-bolt mast base
Chinook bungee uphaul
Mystic Cross�re 5/4 full wet suit + neoprene boots, gloves, and hat
Mystic Cross�re 3/2 shorty wet suit + neoprene Vibram Five Fingers
Dakine Surface personal �otation device

Total investment: about three thousand dollars, including
delivery. Windsur�ng isn’t cheap, but if I take good care of the
gear, it should last a long time.

At �rst, I was leaning toward purchasing a larger sail, but Gary’s
been teaching people how to windsurf for over two decades, and
quickly talked me out of it. Large sails, he said, can be great for
lower wind conditions, but only if you know how to use them.

The downside of large sails is that they’re heavier and more
di�cult to lift out of the water. If I start with a large sail while I’m

still getting the hang of balancing and turning, I’ll, in Gary’s words,
“hate my life.”

I’d rather not hate my life, so I took Gary’s advice and opted for
the smaller sail. Once again, it pays to take the advice of more
experienced mentors before making decisions. After half an hour on
the phone with Gary, I placed my order with Isthmus.

As it turns out, commercial freight shipping companies are able
and willing to deliver surfboard-sized objects wherever you like, so
getting the equipment was easier than I expected. Gary estimated
that it would take about a week to receive the gear, so in the
meantime, I started educating myself about how to use it.

Avast, Ye Lubbers!

A bit of time browsing the Internet led me to a few introductory
windsur�ng resources:

A Beginner’s Guide to Zen and the Art of Windsurfing by Frank Fox (1988)
Windsurfing by Peter Hart (2005)
Learn Windsurfing in a Weekend by Phil Jones (1992)
Beginner to Winner (DVD) by Jem Hall (2006)

These resources all do a good job of explaining windsur�ng
terms, theory, and basic technique. Jem Hall’s instructional DVD is
particularly good at explaining how to handle the board in the
water: it’s easier to explain complex movements by demonstrating
them. Books are at a disadvantage there, since even the best
illustrations can be confusing to parse compared to a detailed how-
to video.

One thing that struck me immediately was how much traditional
sailing terminology is used in windsur�ng. It makes sense, since a
sailboard is basically a sailboat that uses a surfboard instead of a
hull, but it still surprised me. Windsurfers are referred to as
“sailors,” and the terms used in instruction come directly from
sailing.

It’s been several years since I’ve sailed, so I need to review. If
you don’t know the terms, reading instructional books can be
frustrating, so it’s important to know the key ideas. Here are a few:

Wind direction—directions like north, south, east, and west aren’t very useful in
sailing, since the wind changes. Directions are given relative to the wind direction:
windward means traveling into the prevailing wind, and leeward means traveling
with the wind.
Craft direction—likewise, “left” and “right” are relative to the current orientation
of the craft. Port means the left side of the craft, while starboard means the right.
Front and back—the front of the craft is called the bow, and the back is called the
stern. Toward the bow is called fore, and toward the stern is called aft.
Turning—the terms for turning the board are tacking and jibbing. The di�erence
between them is which end of the board happens to be passing through the wind
during the turn. If you’re moving into the wind (to windward) and you turn,
you’re tacking. If you’re moving away from the wind (to leeward) and you turn,
you’re jibbing.

Combining these terms is where it starts to get tricky. If you’re
headed toward the wind and you turn the bow of the craft to the

right (to starboard), you’re on a “port tack,” since the wind is
coming over the left (port) side of the craft.

It’s confusing, so it takes me a few hours to decode the
instructions in the book and imagine them on the water. This
mental simulation process will be helpful when I’m on the water: by
imagining the concepts applied to a real craft, I’m making it easier
to recall them when it counts.

The parts of a sailboard also have distinctive names:

The board—we’ve already covered bow, stern, port, and starboard, but that’s not
all we need to remember. Windsur�ng boards typically have additional pieces, like
a large �n in the center (daggerboard) and a smaller �n at the stern (fin or skeg),
both of which extend down into the water. On the top of the board, there’s a place
to attach the sail (mastfoot), which is secured by a mechanical base (mast base).
There are also typically foot straps on the top of the board, which help the sailor
stay balanced and in the correct position when the board really gets moving.
The sail—windsur�ng sails are roughly triangular, and are attached to the board
via a large vertical pole called a mast. The mast is inserted into a pocket in the sail
(mast sleeve) that extends from the mastfoot to the top (head). Once the mast is in
place, a horizontal handhold (boom) is placed roughly perpendicular to the mast
and is secured to the mast with a clamp. The three sides of the sail are tied to mast

and boom with nylon rope (line), which is tightened by wrapping it around the end
of the boom, then threading it through a special rope-holding device called a clew.
Once the sail is fully rigged, the mast is attached to the mastfoot, making the board
ready to sail.

Properly rigging the board requires judgment and experience.
There are several ways to attach the mast base to the board, and
each variation changes the board’s center of gravity. Depending on
the board, there may also be di�erent ways to set up the stern �n
and foot straps, all of which a�ect the board’s performance on the
water.

Likewise, the way you rig the sail has a huge impact on how the
board handles. The two biggest variables are the downhaul and
outhaul, which refer to how tight you make the ropes that secure
the sail to the bottom of the mast and the far side of the boom. Less
downhaul and outhaul creates a larger “pocket” in the sail, which
means the sail is able to catch more wind, producing more power.
Adding more downhaul and outhaul reduces the size of the pocket,
reducing the potential power, which makes the sail more
manageable in very windy conditions.

Stand Back, I’m About to Do Physics!

Sails are fascinating devices. Contrary to popular belief, sailboards
(and sailboats in general) don’t move because the wind pushes on
the sail. The full story is a bit more complicated than that.

Sails work by creating di�erences in air pressure on the front and
back of the sail. In most conditions, as air �ows around the sail, the
�ow creates an area of low pressure in the front (toward the bow),
and an area of high pressure in the back (toward the stern). The
combined e�ect of these two di�erent pressure zones creates a force
that moves the craft in the direction of the low-pressure area.

As a result, the wind pulls the sail as much as it pushes it. Airplane
wings work much the same way.

That’s important to know when you’re on the water, trying to
move. If your mental model of how sails work is “maximize the
amount of sail the wind can blow on,” you’ll have a hard time
adding power, as well as sailing in any direction other than where
the wind happens to be blowing.

All of this information is tough to keep track of, but I’m glad I
have a bit of time to learn the basic theory before I try my hand at
sailing. Windsur�ng is primarily a motor skill, but if I don’t
understand how the craft works, I risk spending a lot of time
practicing the wrong moves.

Watching the Wind

In addition to reading books, I also began paying much closer
attention to the weather. Before becoming interested in
windsur�ng, I never noticed the wind unless it was blowing
abnormally hard. Now, I’m �nding myself watching it constantly,
scrutinizing the tops of trees to estimate wind speed.

Technology helps here: websites like Weather Underground,9

Wind�nder,10 and iWindsurf11 collect wind information from
locations all over the world, making it much easier to check wind
speed in various locales.

Of course, the only wind that really matters is the wind that’s
over the water where you intend to windsurf. To check wind speed
and direction at the lake, I picked up a Kestral 3000 Pocket Wind
Meter.12 This handy little device lets me check the current wind
speed at the lake, so it’s more accurate than the information online.
The unit is also capable of measuring both air and water
temperature, so I can make sure I’m not going out if the
hypothermia risk is high.

As I watch the wind over the course of a few days, I begin to
notice patterns. At the lake, light winds tend to come from the east
in the morning, then pick up and shift to blow from the north-

northwest in the afternoon, usually around four p.m. Since I’ll be
launching from the east side of the lake, it will be best to go out in
the afternoon. Four is also a good time for my schedule in general:
if I plan my workday well, I can go out for an hour or so without
major distractions.

You Can’t Windsurf Without Wind

I also notice that the winds aren’t very predictable here: There’s a
lot of variability. Some days it’s windy, and some days it’s not.
Based on what I’ve read, if the wind is less than �ve to six miles an
hour, it isn’t worth rigging up.

That means I’ll need a backup plan. Fortunately, I have an idea:
I’ve seen people out on the lake on stand-up paddleboards, which
also looks like a fun activity that also meets my boating criteria. If
I’m generating my own power with the paddle, I don’t need the
wind, so paddleboarding will be a good alternative on days when I
can’t windsurf.

I already have a PFD and two wet suits, so all I need is a decent
stand-up paddleboard and a long paddle. After a bit of research, I
settle on the following equipment:

Ocean Kayak Nalu 11' paddleboard
Quick Blade Kahana Elite 80'' paddle

The paddleboard comes delivered on the same freight truck as my
sailboard. Between my sailboard and paddleboard, I can spend time
on the water regardless of the wind conditions.

Putting Together the Pieces

Now that I have all of my gear, I need to �gure out how to put the
board and sail together, a process called rigging.

Fortunately, Isthmus has me covered. Rigging is a common
trouble area for new sailboard owners, since it’s a complicated

process that involves several di�erent parts. When you’re trying to
�gure out which rope goes where, it’s easy to get confused.

Isthmus solved this problem by providing detailed rigging
videos,13 so you can watch as a pro rigs a board in real time.
Instructional video is ideal for this type of learning: I watched the
instructions several times and made notes before trying it with my
own gear.

Armed with my notes, I was able to rig my board in about thirty
minutes: not bad for my �rst attempt. I’m in my wet suit, my board
is ready, and the wind is blowing. Time to launch.

The Maiden Voyage

I carry my board and sail down to the edge of the water, attach the
mast to the base, then �oat the rig out into the lake until the water
is waist high: deep enough to lower the daggerboard. The wind is
coming from the northwest at about twelve miles an hour, creating
a good bit of chop on the lake’s surface. No matter: I’ve got this.

I push myself up onto the board, stand up, then lean over to grab
the uphaul, a braided bungee cord attached to the mast. By yanking
on the uphaul, I can pull the sail out of the water until it’s straight,
roughly perpendicular to the board.

As the sail leaves the water, the outhaul naturally moves to
leeward, away from the wind. That allows me to raise the sail
without adding power, so I stay roughly where I am, holding onto
the mast with both hands. This “neutral” position is the starting
point of windsur�ng, so I’m feeling pretty good about myself. So
far, I’m doing great.

My next order of business is to sheet in the sail: move one of my
hands o� the mast, grab the boom, and pull. By doing this, I’ll add
power, and start moving.

Here goes nothing …

At the Mercy of Mother Nature

I was not prepared for what happened next.
As I pulled the boom toward me, several things happened at once.

The board started moving faster than I expected, and combined with
the rocking of the board under my feet, I panicked and lost my
balance. My center of gravity shifted backward, and before I could
process what was going on, I was in the water.

My hands were still holding the boom, so the last thing I saw
before submerging was the mast moving very quickly in the
direction of my head.

Did I mention I wasn’t wearing a helmet?
I’m not sure what I expected falling o� of a sailboard to feel like,

but it certainly wasn’t this violent. Fortunately, the mast missed my
head by a foot, but the fall knocked the wind out of me, and I
swallowed a few mouthfuls of nasty lake water. Below the surface, I
couldn’t tell which way was up.

Fortunately, I wasn’t under water long: my PFD brought me to
the surface, coughing and sputtering. That’s when I noticed my next
problem: I couldn’t see anything.

I rely on glasses to correct my vision. Contact lenses don’t work
well for me, so I gave up on them years ago. Before going out on
the water, I didn’t think about my prescription sunglasses, and of
course, I wasn’t wearing any sort of strap to keep them attached to
my head. As a result, my �rst fall tore my glasses from my face.
They’re currently adorning the lake bed, never to be seen again.

I’m �ve minutes into my �rst windsur�ng excursion, and I’m
already soaked, blind, and shaken after narrowly avoiding a
concussion.

This is not going well.
I grit my teeth and swim toward the board. By the time I’m able

to reorient myself, the wind has blown it ten to �fteen feet away
from me. I grab the board, hoist myself up, and uphaul once more.

Self-Rescue

In the forty minutes I was on the water that day, I fell in every
possible fashion: backward, forward, sideways. I swallowed enough
water to cause nausea, and my legs, arms, and back were aching
from uphauling the sail over and over and over again.

Eventually, I decided enough was enough. I was cold, sick, and
exhausted. Time to go home.

Unfortunately, I don’t know how to steer this damn board, and
every time I try to raise the sail, I end up inhaling more water. The
wind is blowing me south, away from my launching spot. I couldn’t
maneuver back there if my life depended on it.

At that point, I decided it was time to practice a self-rescue
technique I learned from one of the books I’d picked up. I laid down
on the board and arranged the sail so that it was laying �at on top
of me, with the top of the sail pointing back toward the stern. Then,
I started paddling with my arms, slowly pulling myself toward the
shore.

It was slow going. I wasn’t very far out, but it took me ten
minutes of hard paddling to get back. Arms aren’t very e�cient
paddles in even the best of circumstances, and these were not the
best of circumstances.

When I �nally landed, my trials weren’t over. Since I was quite a
ways from my launching position, that meant my �rst outing ended
with a proper “walk of shame.” I forced my exhausted body to carry
my gear back to the car, drove home, and collapsed.

Not an auspicious beginning.

Post-Traumatic Event Analysis

After resting, I reviewed the outing. What happened out there?
What went wrong?

First, the wind conditions were too strong for an absolute
beginner. For someone with any experience, they were probably

�ne, but for my �rst time on a board, it was too much, too fast.
Lesson learned.

Second, I have no experience balancing on any sort of board. I’ve
never surfed, never skateboarded, or done anything else that
required balancing on a moving surface. The waves created by the
wind were rocking the board, and that freaked me out.

Third, adding power to the sail shifts the center of gravity on the
board. If I don’t shift my body in the right way to compensate, I’m
likely to fall. If I don’t let go of the sail quickly enough if I sense
I’m out of control, I’ll probably take a dive. I need to get
comfortable shifting just enough in any direction to stay on the
board, particularly during wind gusts.

Fourth, I didn’t have all of the proper safety gear. I clearly need a
helmet to protect my head from the mast in case I fall. I had a close
call once, and I got lucky. I won’t make the same mistake again:
I’m ordering a helmet immediately.

Learning from the Past

There are a few things I can do to help prevent my next practice
session from resembling my �rst.

First, I can ensure my next session takes place on a day with less
wind. It may not be as exciting, but it will let me practice without
being overwhelmed.

Second, I can get a feel for balancing on the board by taking it
out without the sail attached, using my eighty-inch paddle to
maneuver. By removing the variable of the sail, I can get a feel for
what it’s like to balance on the board, and learn how far I can lean
in any direction without capsizing. It won’t be a perfect test, since
the sail will change the board’s center of gravity once it’s attached,
but it’s better than constantly falling.

Third, I can focus my next practice with the sail on learning to
sense the sail’s balance. If I pay attention, I’ll be able to feel which

direction the sail is moving, and how that a�ects the board. I can
learn when to shift my weight back to counterbalance the force of
the sail, when to let up to avoid falling backward, and when to let
go if a wind gust suddenly makes the sail too much to handle.

The next few days are calm, which gives me a chance to isolate
balancing on the board. That test is a success: by the end of my
practice session, I’m no longer freaking out as much, and later, a
high-wind day gives me the opportunity to practice balancing on the
board when the water is choppy. I still have to get over the oddness
of looking down and seeing the water moving beneath my feet, but
just experiencing the sensation for a while goes a long way in
calming my nerves.

A few days later, it’s sunny and warm, with a brisk but not-too-
crazy breeze. I rig up, launch, and uphaul into neutral. Am I about
to have a repeat of day one?

Not at all: I only fell twice that day. Isolating balancing on the
board helped a lot, and I was able to avoid falling when I sensed the
board getting out of control. I uphauled a lot that day, but that’s
okay: it’s better than drinking lake water. I practiced adding power
to the sail, and suddenly I was moving.

How Do You Turn This Thing?

Getting the board to move without falling is a victory, but it
introduces a new pressing problem: How do you turn?

I experimented with things I learned from the books and DVD:
spinning the board under my feet while I held the sail in neutral
position helped a lot. It also helped to remember that sailboards
(and sailboats in general) can’t move directly into the wind.

There’s a “dead” or “no-go” zone that extends forty-�ve degrees
to either side of windward: try to sail anywhere inside that zone,
and you’ll �nd yourself “in irons,” and you’ll stop, or start moving
backward. To move into the wind, you have to point the board at

least forty-�ve degrees to either side of windward, sheet in the sail,
then tack to move in the other direction after you move for a while.
By tacking back and forth, you can zigzag your way to your
destination, even if it’s upwind.

It’s also important to be able to turn the board under power.
When you’re moving, shifting the sail to the left or right changes
the center of e�ort, the focal point of all of the force the wind is
generating on the sail, relative to the board’s center of lateral
resistance, the focal point of the resistance between the board and
the water. By shifting the sail to fore, aft, port, or starboard, the
relationship between these focal points changes, and the board turns
to compensate.

When you’re getting back on the board after falling, it’s common
to �nd yourself in an odd position. Ideally, you want the board to
be perpendicular to the wind, with the sail pointing downwind. In
this position, you can uphaul the sail without too much di�culty.

If the sail is pointing upwind, however, you’re in danger of the
boom smacking you in the face as you uphaul when it catches the
wind. Likewise, you can �nd your board pointed into the wind,
straight into the dead zone.

To compensate, it’s best to use your feet to rotate the sail so it’s
perpendicular to the board, regardless of the wind’s direction. Once
the sail and board are perpendicular to each other, you can uphaul
slowly, allowing the wind to rotate the board into the correct
position. Once the sail is on the downwind side, you can uphaul
completely, then tack in whichever way you want to go.14

After a few hours of practice, I’m getting the hang of it. I’m not
very agile or fast, and my turns aren’t pretty, but I can launch the
board, sail out to the middle of the lake, and get back to roughly
where I started. Compared to my �rst windsur�ng experience, it’s a
huge improvement.

For Everything, There Is a Season

Autumn hits fast and hard on the Front Range of Colorado, typically
at the end of September. One day it’s seventy-�ve degrees and
sunny, the next, it’s thirty degrees and threatening to snow.

I’ve been out on the water as much as possible each afternoon,
trying to maximize my practice time before the weather changes.
The water temperature is stable at sixty-eight degrees: a bit chilly,
but not in the hypothermia danger zone. With a wet suit, the initial
shock of entering the water is the worst part: after that, falling in is
no big deal.

On days when the wind is over six miles per hour, I rig up the
sailboard. On days when the winds are calm, I paddleboard instead.

I’ve been doing more paddleboarding than windsur�ng: it’s
di�cult to sailboard when there’s no wind. It’s frustrating, since I
want to get as much windsur�ng practice as I can, but I can’t

negotiate with Mother Nature. The wind is either blowing strong
enough when I’m able to get out on the water, or it’s not.

One morning, the temperature plummets to forty degrees. Over a
period of three days, the lake’s water temperature drops to a frigid
�fty degrees. With my 5/4 wet suit, I could survive for a while, but
risking hypothermia or drowning isn’t high on my list of priorities.
For me, windsur�ng season is over.

I tally up my total practice hours, and come up short of my goal:
nine hours of practice in total, far less than the twenty I wanted to
spend by this point. I spent more time than that on the water
paddleboarding.

There’s an important lesson here: environment matters. It’s easy
to be disappointed that I didn’t hit my practice target, but my desire
to learn can’t make the wind blow. Even then, it wasn’t wise to
spend too much time on the water, since exhaustion is a major risk
factor. As a result, each day I was able to practice at all clocked in
at a total of thirty to forty minutes on the water.

Even though I fell short of twenty hours, I learned a ton. I have a
solid rig, learned how to assemble it properly, �gured out how to
launch in various wind conditions, and practiced getting back on the
board from the water more times than I can count. I can raise the
sail, point myself in the right general direction, and control the
board under power without capsizing. I can turn the board when I
need to, and get back to shore safely, in roughly the same area of
the beach I launched from. That’s a lot of progress in a short period
of time.

As a bonus, I picked up a mini-skill: paddleboarding. The setup
and technique is nowhere near as complex or demanding as
windsur�ng, but it’s a lot of fun. Even when the wind isn’t blowing,
I really enjoy gliding on top of the water, chasing ducks from one
end of the lake to the other. It’s nice to paddle as the sun goes
down, and between the exercise and the scenery, it’s a great way to
unwind.

Reviewing the Method

Let’s review the core of the method I used to learn how to
windsurf:

I acquired the necessary equipment: a board, sail, wet suit, personal �otation
device, helmet, and other important safety gear.
I learned how to rig the board and sail, as well as disassemble, maintain, transport,
and store the rig safely.
I learned how to protect myself from major risks, including drowning, concussion,
and hypothermia.
I learned how to launch the board from shore, raise the sail into neutral position,
and add power to the sail to start moving.
I learned how to turn the board (tack/jibe), and how to position the sail to move in
various wind conditions.
I learned how to avoid falling o� the board, and how to get back on the board and
uphaul the sail if I fall.

Where I’m Going from Here

By the time you read this, it will once again be windsur�ng season.
I’ll be out as soon as the weather and water conditions are out of
the hypothermia danger zone, reacquiring the basics of rigging,
balance, and turning.

I’ll reacquire this basic level of skill quickly, so I’m preparing for
the next challenge: getting the board to hydroplane, which increases
speed dramatically. “Planing” is only possible in high-wind
conditions, and the increased speed increases the risk of crashing
and injury, so I need to be completely comfortable with the basics
before attempting it.

I’ll also be sporting a bigger sail. The generally low (and
variable) wind conditions on the lake make using a larger sail a
good idea, so once I’m comfortable using the 4.7-square-meter sail,
I’m going to start practicing with a 7.5. Between the two sails, I
should be covered: I’ll use the large sail for lower-wind days, and
the smaller sail for high-wind days.

All in all, windsur�ng is great fun. I enjoy my time on the water,
particularly now that I’m not falling so much. I’m looking forward
to the next season, and to taking advantage of the windy days
whenever they appear.

I can’t control Mother Nature, but I can control how I practice
when the conditions are favorable. That’s enough.

Afterword

Achievement seems to be connected with action. Successful men and women keep moving.
They make mistakes, but they don’t quit.

—CONRAD HILTON, FOUNDER OF THE HILTON HOTEL CHAIN

In less than a year, I learned six complex skills.
I’m not a genius or a freak of nature. I’m not naturally talented. I

didn’t quit my day job. I didn’t drop everything and move to the
other side of the world. I didn’t ignore my family.

I just set aside an hour or so every day to practice, and I practiced
in an intelligent way. Skills that began as a complete mystery
became comprehensible in a matter of days, often hours. All it took
was a bit of research and around twenty hours of consistent,
focused, deliberate practice.

Even better, my practice became routine: these skills are now a
part of my daily life. Learning the most important subskills �rst
makes it very easy to keep progressing. By the time you read this,
I’ll be even better in each of these areas. How much better will
depend on how much I practice.

If you want to acquire a new skill, you have to practice. There is
no other way.

You can prepare. You can research. You can eliminate distractions
and alter your environment to make it easier to practice. You can
�nd intelligent ways to make your practice more e�ective or
e�cient. But, in the end, you must practice.

What feels like the long way is the shortest way. Zero-practice
shortcuts don’t exist. No practice, no skill acquisition. It’s as simple
as that.

Why don’t we practice? Simple: we’re busy and we’re scared.
Shakespeare said it well a long time ago, in a play titled Measure for
Measure: “Our doubts are traitors, and make us lose the good we oft
might win, by fearing to attempt.”

The major barrier to rapid skill acquisition is not physical or
intellectual: it’s emotional. Doing something new is always
uncomfortable at �rst, and it’s easy to waste a ton of time and
energy thinking about practicing instead of practicing.

Fortunately, the frustration barrier is deceptively easy to break
through: skill acquisition always feels bigger than it actually is. By
creating time for practice, doing a bit of early research, and leaning
into the initial discomfort, you will always see major progress in the
�rst ten to twenty hours of practice. All it takes to reap the rewards
is a small burst of e�ort, persistence, and a bit of grit.

You don’t need to pick many skills to acquire: just choose one.
Take a skill on your “want to do” list and commit to trying it. Learn
that language, play that instrument, explore that game, work on
that project, cook that dish, create that art. It’s easier than it feels.

Precommit to practicing that skill for an hour or so a day for the
next month. Once you actually start practicing, you’ll always pick it
up more quickly than you expect. Break it down, make the time, try
new things, and your brain will begin picking up the technique
automatically: that’s what brains do. When you get stuck or
confused, test a new approach.

Remember: once you start, you can’t stop until you reach your
target performance level or the twenty-hour mark. Struggle if you
must, but don’t stop. Show your grit, and keep pushing forward.
You’ll get there: all it takes is practice.

One �nal thought: the only time you can choose to practice is
today.

Not tomorrow. Not next week. Not next month or next year.
Today.

When you wake up in the morning, you have a choice. You can
choose to invest your time acquiring skills that will make your life
more successful, enjoyable, and rewarding … or you can squander
your time doing something else.

What will you do today?

Notes

CHAPTER 1

1. Ericsson, K. Anders, Neil Charness, Paul J. Feltovich, and
Robert R. Ho�man, eds. The Cambridge Handbook of Expertise and
Expert Performance (Cambridge: Cambridge University Press, 2006).

2. http://www.chirunning.com/.

3. Undergraduate college programs usually take four years due to
convention and self-interest: colleges bring in more revenue for
every year the student is enrolled. That’s not to say it’s not possible
to complete even the most demanding programs in less time: Scott
H. Young completed MIT’s undergraduate computer science
curriculum in less than one year. See
http://www.scotthyoung.com/blog/mit-challenge/.

4. VanLehn, Kurt. “Cognitive Skill Acquisition.” Annual Review of
Psychology 47, no. 1 (1996): 513–539.

CHAPTER 2

1. If you can relate to my frustration, I recommend reading The
Renaissance Soul: Life Design for People with Too Many Passions to
Pick Just One by Margaret Lobenstine (New York: Harmony, 2006).
Reading this book helped me realize that my diversity of interests is
a strength, and that it’s possible to structure my e�orts to take
advantage of my natural inclination to learn many things at once.

http://www.chirunning.com/
http://www.scotthyoung.com/blog/mit-challenge/

2.
http://www.newyorker.com/reporting/2011/10/03/111003fa_fact_
gawande.

3. I use an Enso Pearl programmable interval timer:
http://www.salubrion.com/products/ensopearl/. You can use any
sort of timer you like, including basic kitchen timers, but the Enso
has built-in intervals and a very nice-sounding chime, which is more
important than it seems. When you’re practicing a lot, strident
electronic beeps get old fast.

4. Snoddy, George S. “Learning and Stability: A
Psychophysiological Analysis of a Case of Motor Learning with
Clinical Applications.” Journal of Applied Psychology 10, no. 1 (1926):
1.

5. Newell, Allen, and Paul S. Rosenbloom. “Mechanisms of Skill
Acquisition and the Law of Practice.” Cognitive Skills and Their
Acquisition (1981): 1–55.

6. Logan, Gordon D. “Toward an Instance Theory of
Automatization.” Psychological Review 95, no. 4 (1988): 492.

CHAPTER 3

1. http://ankisrs.net/.

2. http://www.supermemo.com/.

3. http://smartr.be/.

4. This isn’t a book about academic study techniques, but since
you’re diligently reading the endnotes, here’s a deceptively simple
study method that works wonders: pick an idea, take out a blank
sheet of paper, then try to explain that idea completely using very
simple language, as if you’re teaching a beginner. The gaps in your
knowledge will become clear very quickly, which makes it easy to

http://www.newyorker.com/reporting/2011/10/03/111003fa_fact_gawande
http://www.salubrion.com/products/ensopearl/
http://ankisrs.net/
http://www.supermemo.com/
http://smartr.be/

go back to the source material to learn what’s missing. Scott H.
Young, a study skills researcher, calls this the “Feynman Technique”
(in honor of the renowned physicist Richard Feynman), and it’s
quite e�ective. For more details, see
http://www.scotthyoung.com/learnonsteroids/grab/TranscriptFeyn
man.pdf.

CHAPTER 4

1. There’s something really, really fun about sprinting as fast as
you can toward a waist-high barrier and leaping over it without
breaking stride. The closest I’ve ever come to feeling like Superman
was the time my foot connected squarely with the center of a hurdle
during a race. The wooden bar of the hurdle shattered, and I sailed
through without losing speed. It was awesome.

2. http://www.youtube.com/watch?v=IMC1_RH_b3k.

3. http://www.nytimes.com/2009/07/26/magazine/26FOB-
consumed-t.html.

4. http://www.gilhedley.com/.

5. You can watch Gil’s famous “fuzz speech” here:
http://www.youtube.com/watch?v=FtSP-tkSug. Be advised that the
video contains footage of a dead human body, so you may want to
skip it if you’re squeamish.

6. Sarno, John E. Healing Back Pain: The Mind-Body Connection
(New York: Grand Central Life & Style, 2010).

7. I’m about to attempt to explain thousands of years of very
complex history in a few paragraphs. Books about these topics can
�ll entire libraries, so please excuse my brevity. If you’re interested
in a more detailed overview, I recommend reading The Great

http://www.scotthyoung.com/learnonsteroids/grab/TranscriptFeynman.pdf
http://www.youtube.com/watch?v=IMC1_RH_b3k
http://www.nytimes.com/2009/07/26/magazine/26FOB-consumed-t.html
http://www.gilhedley.com/
http://www.youtube.com/watch?v=FtSP-tkSug

Transformation: The Beginning of Our Religious Traditions by Karen
Armstrong (New York: Anchor, 2007).

8. Armstrong, Karen. The Great Transformation: The Beginning of
Our Religious Traditions (New York: Anchor, 2007).

9. Desikachar, T. V. K., and R. H. Cravens. Heath, Healing, and
Beyond: Yoga and the Living Tradition of Krishnamacharya (New York:
North Point Press, 1998). A short biography is also available at
http://www.yogajournal.com/wisdom/465.

10. How much Krishnamacharya consciously adopted from non-
hatha sources like British gymnastics is a matter of debate. At a
minimum, many of the poses and movements Krishnamacharya
included in his sequences bear a very strong resemblance to
gymnastics and military training exercises of the time.

11. http://www.nytimes.com/2012/01/08/magazine/how-yoga-
can-wreck-your-body.html?_r=3&pagewanted=all.

12.
http://www.manduka.com/us/shop/categories/products/gear/man
duka-pro-black-sage/.

13. http://orthoinfo.aaos.org/topic.cfm?topic=A00063.

CHAPTER 5

1. http://personalmba.com/best-business-books/.

2. http://wordpress.org.

3. For the curious: my standard WordPress stack consisted of
PHP5 with PHP-FastCGI, NGINX, APC, MSMTP, and WP-Supercache
on a Slicehost.com VPS running Ubuntu 8.04 LTS, all with custom
con�guration �les.

4. http://jekyllrb.com.

http://www.yogajournal.com/wisdom/465
http://www.nytimes.com/2012/01/08/magazine/how-yoga-can-wreck-your-body.html?_r=3&pagewanted=all
http://www.manduka.com/us/shop/categories/products/gear/manduka-pro-black-sage/
http://orthoinfo.aaos.org/topic.cfm?topic=A00063
http://personalmba.com/best-business-books/
http://wordpress.org/
http://slicehost.com/
http://jekyllrb.com/
http://github.com/

5. http://github.com.

6. For some reason, almost every programming tutorial begins
with showing you how to display or print “Hello, World!”

7. http://stackover�ow.com.

8. http://news.ycombinator.com.

9. http://rubyonrails.org/.

10. http://www.sinatrarb.com.

11. http://37signals.com/.

12. http://rubysource.com/rails-or-sinatra-the-best-of-both-
worlds/.

13. http://paulstamatiou.com/how-to-wordpress-to-jekyll.

14. https://github.com/sstephenson/rbenv.

15. In practice, “hacking” is nothing like how it’s portrayed in
movies, which I �nd highly disappointing.

16. https://toolbelt.heroku.com.

17. http://www.heroku.com/.

18. http://git-scm.com/.

19. Versions of Ruby before 1.9.3-p125 required a program called
GCC to complete the installation. GCC is available at
https://github.com/kennethreitz/osx-gcc-installer.

20. Programmers coined the acronym “RTFM,” which stands for
“read the (freaking) manual,” as a standard response to questions
about issues covered in a program’s o�cial documentation.

21. http://www.ruby-lang.org/en/documentation/.

http://github.com/
http://stackoverflow.com/
http://news.ycombinator.com/
http://rubyonrails.org/
http://www.sinatrarb.com/
http://37signals.com/
http://rubysource.com/rails-or-sinatra-the-best-of-both-worlds/
http://paulstamatiou.com/how-to-wordpress-to-jekyll
https://github.com/sstephenson/rbenv
https://toolbelt.heroku.com/
http://www.heroku.com/
http://git-scm.com/
https://github.com/kennethreitz/osx-gcc-installer
http://www.ruby-lang.org/en/documentation/
http://0xfe.muthanna.com/rubyrefresher/

22. http://0xfe.muthanna.com/rubyrefresher/.

23. https://code.google.com/p/ruby-security/wiki/Guide.

24. The term for advanced modi�cation of Ruby’s core objects,
classes, and methods is called metaprogramming. I picked up a book
called Metaprogramming Ruby: Program Like the Ruby Pros by Paolo
Perrotta (Raleigh, NC: Pragmatic Bookshelf, 2010), and it’s way
over my head at the moment. First things �rst.

25. http://www.ruby-doc.org/core–1.9.3/index.html.

26. http://ruby.learncodethehardway.org/.

27. https://devcenter.heroku.com/articles/keys.

28. https://devcenter.heroku.com/articles/ruby.

29. https://devcenter.heroku.com/articles/rack.

30. http://macromates.com/.

31. https://devcenter.heroku.com/articles/bundler.

32. http://www.sinatrarb.com/intro.

33. http://backpackit.com.

34. http://tom.preston-werner.com/2010/08/23/readme-driven-
development.html.

35. http://www.postgresql.org/.

36. http://datamapper.org/.

37. http://stackover�ow.com/questions/1152299/what-is-an-
object-relational-mapping-framework.

38. http://en.wikipedia.org/wiki/SQL.

39. http://www.sqlite.org/.

http://0xfe.muthanna.com/rubyrefresher/
https://code.google.com/p/ruby-security/wiki/Guide
http://www.ruby-doc.org/core-1.9.3/index.html
http://ruby.learncodethehardway.org/
https://devcenter.heroku.com/articles/keys
https://devcenter.heroku.com/articles/ruby
https://devcenter.heroku.com/articles/rack
http://macromates.com/
https://devcenter.heroku.com/articles/bundler
http://www.sinatrarb.com/intro
http://backpackit.com/
http://tom.preston-werner.com/2010/08/23/readme-driven-development.html
http://www.postgresql.org/
http://datamapper.org/
http://stackoverflow.com/questions/1152299/what-is-an-object-relational-mapping-framework
http://en.wikipedia.org/wiki/SQL
http://www.sqlite.org/
http://pow.cx/

40. http://pow.cx/.

41. https://github.com/rodreegez/powder.

42. http://twitter.github.com/bootstrap/.

43. I have no idea why it’s called a slug, and I agree it’s weird.

44. See http://www.regular-expressions.info/ for examples of
common regular expressions.

45. http://daring�reball.net/projects/markdown/.

46. http://www.httpwatch.com/httpgallery/authentication/.

47. Using SSL on a custom domain is more complicated: you have
to go through a long process to verify your identity and obtain a
“certi�cate” that secures each user’s session.

48. https://github.com/SFEley/sinatra-�ash.

CHAPTER 6

1. Here’s a fun fact: Tiger Woods is the only professional golfer
in history to win the U.S. Masters with three di�erent golf swings.
Tiger retrained with Butch Harmon after his Masters win in 1997,
won again in 2001 and 2002, retrained again in 2002 with Hank
Haney, then won in 2005. Most recently, Tiger began his third
swing retraining with Sean Foley in 2011, making this Tiger’s
fourth swing since becoming a professional golfer.

2. Vector keyboard image via
http://wowvectors.com/object/mac-keyboard-vector/. Distributed
under the Creative Commons Attribution 3.0 Unported license.

3. For a very interesting history of the development of the
QWERTY typewriter, see “The Fable of the Keys” by S. J. Liebowitz

http://www.sqlite.org/
http://pow.cx/
https://github.com/rodreegez/powder
http://twitter.github.com/bootstrap/
http://www.regular-expressions.info/
http://daringfireball.net/projects/markdown/
http://www.httpwatch.com/httpgallery/authentication/
https://github.com/SFEley/sinatra-flash
http://wowvectors.com/object/mac-keyboard-vector/

and Stephen E. Margolis, available at
http://www.utdallas.edu/~liebowit/keys1.html.

4. http://www.google.com/patents?id=qSVdAAAAEBAJ.

5. http://mkweb.bcgsc.ca/carpalx/.

6. http://mkweb.bcgsc.ca/carpalx/?colemak.

7. http://colemak.com.

8. Other operating systems may need to install a small software
package that enables the layout. Packages for most popular systems
are available at http://colemak.com.

9. http://www.typematrix.com/2030/features.php.

10. On TypeMatrix keyboards, you can activate Colemak hardware
mode by pressing Fn+F5.

11. This won’t work on all keyboards: many models have
di�erent-sized keys on the top, middle, and bottom rows. If that’s
the case, it’s probably easier to either get another keyboard or
order stickers that can be a�xed over each key.

12. http://www.typeonline.co.uk/typingspeed.php.

13. Test corpus material comes from books are in the public
domain, which are freely distributed online via Project Gutenberg.
See http://www.gutenberg.org/.

14. http://www.mavisbeacon.com/.

15. http://typingtrainer.sourceforge.net/.

16. http://github.com/wwwtyro/keyzen.

17. Luft, Andreas R., and Manuel M. Buitrago. “Stages of Motor
Skill Learning.” Molecular Neurobiology 32, no. 3 (2005): 205–216.

http://www.utdallas.edu/~liebowit/keys1.html
http://www.google.com/patents?id=qSVdAAAAEBAJ
http://mkweb.bcgsc.ca/carpalx/
http://mkweb.bcgsc.ca/carpalx/?colemak
http://colemak.com/
http://colemak.com/
http://www.typematrix.com/2030/features.php
http://www.typeonline.co.uk/typingspeed.php
http://www.gutenberg.org/
http://www.mavisbeacon.com/
http://typingtrainer.sourceforge.net/
http://github.com/wwwtyro/keyzen

18. Walker, Matthew P., and Robert Stickgold. “It’s Practice, with
Sleep, That Makes Perfect: Implications of Sleep-Dependent
Learning and Plasticity for Skill Performance.” Clinics in Sports
Medicine 24, no. 2 (2005): 301–317.

19. http://www.daskeyboard.com/model-s-ultimate-silent/.

20. http://type-fu.com.

21. Milton, James. Measuring Second Language Vocabulary
Acquisition (Bristol, UK: Multiligual Matters, 2009).

22. http://code.google.com/p/amphetype/.

23. http://norvig.com/ngrams/.

CHAPTER 7

1. In my opinion, the most disappointing aspect of reality is the
lack of magic: given how much I read, I’d be at least a level 80
wizard by now. Alas, using my mind to manipulate the fabric of the
universe is still beyond my capabilities.

2. Here’s another fun fact: if you shu�e a deck of cards
thoroughly, the resulting sequence of cards has never been seen
before in the history of the universe. “52 factorial” is a very large
number: 8.065 times 1067, or over 80 unvigintillion, possible
combinations.

3. Other famous games include the Blood Vomiting Game, in
which one of the master players died after the match, and the
Atomic Bomb game, in which the match was interrupted by the
explosion of the atomic bomb over Hiroshima. After the bomb went
o�, the players took a break for lunch, replaced the stones on the
board, and resumed the game. See http://senseis.xmp.net/?
FamousGoGames for more famous games.

http://www.daskeyboard.com/model-s-ultimate-silent/
http://type-fu.com/
http://code.google.com/p/amphetype/
http://norvig.com/ngrams/
http://senseis.xmp.net/?FamousGoGames
http://www.ymimports.com/

4. http://www.ymimports.com.

5. http://senseis.xmp.net/.

6. Yes, that’s where the name of the Atari video game console
comes from.

7. http://senseis.xmp.net/?TheTenGoldenRulesList.

8. http://diiq.org/�ve_stone_questions.html.

CHAPTER 8

1. http://cdp.sagepub.com/content/14/6/317.short.

2. http://www.crowhillguitars.com.

3. http://www.daddario.com/DADProductDetail.Page?
ActiveID=3769&productid=264.

4. http://www.axisofawesome.net.

5. http://www.ukuleles.com/Technology/strings.html.

6. http://www.kiwiukulele.co.uz/Kiwi-Ukulele-Chord-Chart.pdf.

CHAPTER 9

1. http://jimbodouglass.blogspot.com/.

2. If you want to see what it looks like to go really fast on a
Formula board, check out Jim’s boom-cam video:
http://jimbodouglass.blogspot.com/2010/01/formula-windsur�ng-
boom-mount-video.html.

3. The Boy Scouts call this the buddy system, and it’s the cardinal
rule of water safety.

4. Wet suits trap a layer of water close to the body, which is then
warmed by body heat, acting as an insulating layer. Below water

http://www.ymimports.com/
http://senseis.xmp.net/
http://senseis.xmp.net/?TheTenGoldenRules
http://diiq.org/five_stone_questions.html
http://cdp.sagepub.com/content/14/6/317.short
http://www.crowhillguitars.com/
http://www.daddario.com/DADProductDetail.Page?ActiveID=3769&productid=264
http://www.axisofawesome.net/
http://www.ukuleles.com/Technology/strings.html
http://www.kiwiukulele.co.uz/Kiwi-Ukulele-Chord-Chart.pdf
http://jimbodouglass.blogspot.com/
http://jimbodouglass.blogspot.com/2010/01/formula-windsurfing-boom-mount-video.html

temperatures of �fty degrees, it’s best to use a dry suit, which
prevents water from touching skin.

5. http://www.dbw.ca.gov/Pubs/Windsurf/index.htm.

6. http://jimbodouglass.blogspot.com/2008/02/top–16-
windsur�ng-questions-answered.html.

7. http://jimbodouglass.blogspot.com/2010/11/updated-
windsurf-calculator-online.html.

8. http://www.isthmussailboards.com/.

9. http://www.wunderground.com/.

10. http://www.wind�nder.com/.

11. http://www.iwindsurf.com/.

12. http://www.kestrelmeters.com/products/kestrel-3000-wind-
meter.

13. http://www.isthmussailboards.com/info_technical_help.asp.

14. For a detailed guide on how to do this, complete with
diagrams, see
http://jimbodouglass.blogspot.com/2012/10/beginner-windsur�ng-
how-to-reorient.html.

http://www.dbw.ca.gov/Pubs/Windsurf/index.htm
http://jimbodouglass.blogspot.com/2008/02/top-16-windsurfing-questions-answered.html
http://jimbodouglass.blogspot.com/2010/11/updated-windsurf-calculator-online.html
http://www.isthmussailboards.com/
http://www.wunderground.com/
http://www.windfinder.com/
http://www.iwindsurf.com/
http://www.kestrelmeters.com/products/kestrel-3000-wind-meter
http://www.isthmussailboards.com/info_technical_help.asp
http://jimbodouglass.blogspot.com/2012/10/beginner-windsurfing-how-to-reorient.html

Acknowledgments

To Kelsey and Lela: I love you. Thanks for everything.
To Dave, Sheri, and Zulema: thank you for the Lela-wrangling

that made this book possible.
To Leslie Kamino�, Derek Sivers, Jim Douglass, and Gary Stone:

thanks for your generosity and help. I’ve learned so much from you.
To Lauren Baker: thanks for making the illustrations in this book

print worthy.
To Lisa DiMona: I am fortunate beyond measure to have your

help and support.
To Adrian Zackheim and Joel Rickett: viva Portfolio!
To Emily Angell: you wield the red pen with �nesse. Thanks for

your insight and diligence.
To Will Weisser, Margot Stamas, Richard Lennon, and Allison

McLean: books without readers aren’t very fun. Thanks for
everything you do to spread the word.

To Joe Perez and Dan Donohue: when people judge books by
their covers, you always make your authors look great. I appreciate
your hard work bringing this idea to life.

To Bria Sandford, Samantha LaBue, Sarah Katie Coe, Thomas
Dussel, and the entire production and distribution team at Penguin:
thank you for everything you’ve done, and continue to do, to bring
this book to readers worldwide.

To You, Dear Reader: you’re the reason I do what I do. I hope
you enjoyed this book, and �nd the information useful in the years

to come. Good luck!

THE BEGINNING

Let the conversation begin...

Follow the Penguin Twitter.com@penguinukbooks

Keep up-to-date with all our stories YouTube.com/penguinbooks

Pin ‘Penguin Books’ to your Pinterest

Like ‘Penguin Books’ on Facebook.com/penguinbooks

Find out more about the author and
discover more stories like this at Penguin.co.uk

https://twitter.com/PenguinUKBooks
http://youtube.com/penguinbooks
http://pinterest.com/penguinukbooks/
http://www.facebook.com/penguinbooks
http://www.penguin.co.uk/

PORTFOLIO PENGUIN
Published by the Penguin Group
Penguin Books Ltd, 80 Strand, London WC2R 0RL, England
Penguin Group (USA) Inc., 375 Hudson Street, New York, New York 10014, USA
Penguin Group (Canada), 90 Eglinton Avenue East, Suite 700, Toronto, Ontario, Canada
M4P 2Y3 (a division of Pearson Penguin Canada Inc.)
Penguin Ireland, 25 St Stephen’s Green, Dublin 2, Ireland (a division of Penguin Books Ltd)
Penguin Group (Australia), 707 Collins Street, Melbourne, Victoria 3008, Australia (a
division of Pearson Australia Group Pty Ltd)
Penguin Books India Pvt Ltd, 11 Community Centre, Panchsheel Park, New Delhi – 110
017, India
Penguin Group (NZ), 67 Apollo Drive, Rosedale, Auckland 0632, New Zealand (a division of
Pearson New Zealand Ltd)
Penguin Books (South Africa) (Pty) Ltd, Block D, Rosebank O�ce Park, 181 Jan Smuts
Avenue, Parktown North, Gauteng 2193, South Africa

Penguin Books Ltd, Registered O�ces: 80 Strand, London WC2R 0RL, England

www.penguin.com

First published 2013

Copyright © Worldly Wisdom Ventures LLC, 2013

The moral right of the copyright holder has been asserted

Cover design and illustration: Dan Donohue

All rights reserved

Photographs by the author

ISBN: 978-0-670-92193-5

http://www.penguin.com/

	Title Page
	Contents
	ABOUT THE AUTHOR
	Dedication
	A Note to the Reader
	The First 20 Hours
	1: A Portrait of the Author as a Learning Junkie
	Damn You, Malcolm Gladwell
	Look Upon My Works, Ye Mighty, and Despair!
	Quality, Not Quantity
	What Is Rapid Skill Acquisition?
	The “Matrix” Misconception
	Skill Acquisition vs. Learning
	The True Value of Learning
	Skill Acquisition vs. Training
	Skill Acquisition vs. Education and Credentialing
	The Neurophysiology of Skill: Brain Plasticity and Muscle Memory

	2: Ten Principles of Rapid Skill Acquisition
	So Does it Work?
	What About Immersion?
	Reactivating Old Skills
	Well Begun Is Half Done

	3: Ten Principles of Effective Learning
	Stacking the Deck
	Putting Theory into Practice
	About These Examples

	4: Yoga
	“You Should Really Look into Yoga …”
	Chakras, Auras, and Kundalinis, Oh My!
	“Relax Your Face”
	The “Householder” Dilemma
	When the Student Is Ready, the Teacher Appears
	The Moment I Decided to Get Serious About Yoga
	What Is “Yoga,” Really?
	Enter the Asanas
	The Codification of Yoga
	The Man Who “Invented” Modern Yoga
	The Guru’s Request
	A New Yoga
	Yoga = Breathing + Movement + Meditation
	Clearing up Misconceptions
	Is Yoga Dangerous?
	Minimum Viable Asana
	Yoga Equipment
	Learning the Poses
	The Sun Salutation Sequence
	Remember to Breathe Like Darth Vader
	Standing Poses
	Floor Poses
	Adjusting the Difficulty
	Shavasana
	Reviewing the Method
	Where I’m Going from Here

	5: Programming
	The Price of Progress
	Examining the Problem
	The System Is Down
	A Potential Solution
	Learning to Code
	So What Is “Programming”?
	Programming Languages
	Thinking Like a Programmer
	What Makes Web Application Programming Different?
	Choosing a Language for Web Application Programming
	Choosing a Framework
	Deconstructing the End Result
	Upgrading Ruby
	What’s a “Git”?
	Installing Ruby Libraries (Gems)
	Hitting the Books
	Commenting and Debugging
	Kicking the Tires with IRB
	Application #1: A Static Website in Sinatra
	Creating the Basic App
	Warning, Warning!
	Sinatra Takes the Stage
	Application #2: Codex, a Personal Notes Database
	Enter DataMapper
	Using DataMapper
	Pow!
	Code, Test, Revise
	Slugs, Slugs Everywhere!
	Creating Pages
	Editing Pages
	Deleting Pages
	Listing All Pages
	Launching the Application the First Time
	Adding Sidebar Support
	Adding Markdown Support
	Adding Security
	Adding “Flash” Messages
	Code Complete
	Rage Against the Machine
	Reviewing the Method
	Where I’m Going from Here

	6: Touch Typing
	A Life Behind the Keyboard
	How the QWERTY Layout Became the “Universal” Standard
	Competition Appears: Dvorak
	A New Challenger Appears: Colemak
	When in Doubt, Test
	What Does Colemak Look Like?
	How Do You Turn On Colemak Mode?
	Modifying My Machine
	How Fast Do I Type?
	Flipping the Switch
	I Have Seen the Enemy, and It Is Me
	Remapping My Brain
	Modifying Keyzen
	Fine-Motor Skills
	Learn While You Sleep!
	Cognitive Interference
	Breaking the Looking Habit
	Das Keyboard
	Deliberate Practice vs. Ambient Practice
	The Final Push
	Impressions from Sixty WPM
	Reviewing the Method
	Where I’m Going from Here

	7: Go
	Away Put Your Weapon, I Mean You No Harm
	The Oldest Strategic Board Game in the World
	The Art of War
	The Rules of the Game
	The Size of the Universe
	So How Do Players (and Computers) Play Go?
	An Actual Game
	Pattern Recognition
	Use Your Feelings …
	Stone Ninja
	Gearing Up
	Follow the White Rabbit
	Eliminating Distractions
	The Rules of the Game, Reexamined
	Give Me Liberty, or Give Me Death
	No Suicide, Please
	Backing into a Corner
	To Infinity, but Not Beyond
	Victory Conditions
	En Garde!
	Charge of the Knights
	Bamboo Is Stronger Than Steel
	Tempered by a Hundred Battles?
	One Eye Bad!
	Two Eyes Good!
	The False Eye (of Sauron?)
	The “Dismantle”
	Chutes and Ladders
	Throwing Nets
	Maximizing Practice Time
	Man Against Machine
	Failure Modes
	Proverbial Wisdom
	“Five Stone” Questions
	Reaching the Twenty-Hour Mark
	Reviewing the Method
	Where I’m Going from Here

	8: Ukulele
	Ukulele Hero
	Meet My New Axe
	Supporting Gear
	An Intriguing Challenge
	Crazy for You
	Defining Success
	The “Four Chord Song”
	Anatomy of an Ukulele
	Tuning
	Notes and Chords
	Playing Chords
	Chord Practice
	Strumming Patterns
	Playing and Singing at the Same Time
	Making It Automatic
	Showtime
	Finger Picking
	One-Four-Five
	Reviewing the Method
	Where I’m Going from Here

	9: Windsurfing
	Life on the Water
	Catching the Windsurfing Bug
	Is Windsurfing Dangerous?
	Where Do I Start?
	Gearing Up
	Avast, Ye Lubbers!
	Stand Back, I’m About to Do Physics!
	Watching the Wind
	You Can’t Windsurf Without Wind
	Putting Together the Pieces
	The Maiden Voyage
	At the Mercy of Mother Nature
	Self-Rescue
	Post-Traumatic Event Analysis
	Learning from the Past
	How Do You Turn This Thing?
	For Everything, There Is a Season
	Reviewing the Method
	Where I’m Going from Here

	Afterword
	Notes
	Acknowledgments
	Follow Penguin
	Copyright Page

