

Succeeding with Use Cases

Ahmed/Umrysh, Developing Enterprise Java Applications with J2EE™
and UML

Arlow/Neustadt, Enterprise Patterns and MDA: Building Better Software
with Archetype Patterns and UML

Arlow/Neustadt, UML and the Unified Process: Practical Object-
Oriented Analysis and Design

Armour/Miller, Advanced Use Case Modeling: Software Systems

Bellin/Simone, The CRC Card Book

Bergström/Råberg, Adopting the Rational Unified Process: Success with
the RUP

Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools

Bittner/Spence, Use Case Modeling

Booch, Object Solutions: Managing the Object-Oriented Project

Booch, Object-Oriented Analysis and Design with Applications, 2E

Booch/Bryan, Software Engineering with ADA, 3E

Booch/Rumbaugh/Jacobson, The Unified Modeling Language User
Guide

Box/Brown/Ewald/Sells, Effective COM: 50 Ways to Improve Your COM
and MTS-based Applications

Carlson, Modeling XML Applications with UML: Practical
e-Business Applications

Collins, Designing Object-Oriented User Interfaces

Conallen, Building Web Applications with UML, 2E

D’Souza/Wills, Objects, Components, and Frameworks with UML: The
Catalysis(SM) Approach

Douglass, Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks, and Patterns

Douglass, Real-Time Design Patterns: Robust Scalable Architecture for
Real-Time Systems

Douglass, Real Time UML, 3E: Advances in The UML for Real-Time
Systems

Eeles et al.,Building J2EE™Applications with the Rational Unified Process

Fontoura/Pree/Rumpe, The UML Profile for Framework Architectures

Fowler, Analysis Patterns: Reusable Object Models

Fowler et al., Refactoring: Improving the Design of Existing Code

Fowler, UML Distilled, 3E: A Brief Guide to the Standard Object
Modeling Language

Gomaa, Designing Concurrent, Distributed, and Real-Time Applications
with UML

Gomaa, Designing Software Product Lines with UML
Graham, Object-Oriented Methods, 3E: Principles and Practice

Heinckiens, Building Scalable Database Applications: Object-Oriented
Design, Architectures, and Implementations

Hofmeister/Nord/Dilip, Applied Software Architecture

Jacobson/Booch/Rumbaugh, The Unified Software Development Process

Jordan, C++ Object Databases: Programming with the ODMG
Standard

Kleppe/Warmer/Bast, MDA Explained: The Model Driven
Architecture™: Practice and Promise

Kroll/Kruchten, The Rational Unified Process Made Easy: A
Practitioner’s Guide to the RUP

Kruchten, The Rational Unified Process, 3E: An Introduction

Lau, The Art of Objects: Object-Oriented Design and Architecture

Leffingwell/Widrig, Managing Software Requirements, 2E: A Use Case
Approach

Manassis, Practical Software Engineering: Analysis and Design for the
.NET Platform

Marshall, Enterprise Modeling with UML: Designing Successful
Software through Business Analysis

McGregor/Sykes, A Practical Guide to Testing Object-Oriented Software

Mellor/Balcer, Executable UML: A Foundation for Model-Driven
Architecture

Mellor et al., MDA Distilled: Principles of Model-Driven Architecture

Naiburg/Maksimchuk, UML for Database Design

Oestereich, Developing Software with UML, 2E: Object-Oriented
Analysis and Design in Practice

Page-Jones, Fundamentals of Object-Oriented Design in UML

Pohl, Object-Oriented Programming Using C++, 2E

Pollice et al. Software Development for Small Teams: A RUP-Centric
Approach

Quatrani, Visual Modeling with Rational Rose 2002 and UML

Rector/Sells, ATL Internals

Reed, Developing Applications with Visual Basic and UML

Rosenberg/Scott, Applying Use Case Driven Object Modeling with
UML: An Annotated e-Commerce Example

Rosenberg/Scott, Use Case Driven Object Modeling with UML:
A Practical Approach

Royce, Software Project Management: A Unified Framework

Rumbaugh/Jacobson/Booch, The Unified Modeling Language Reference
Manual

Schneider/Winters, Applying Use Cases, 2E: A Practical Guide

Smith/Williams, Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software

Stevens/Pooley, Using UML, Updated Edition: Software Engineering
with Objects and Components

Unhelkar, Process Quality Assurance for UML-Based Projects

van Harmelen, Object Modeling and User Interface Design: Designing
Interactive Systems

Wake, Refactoring Workbook

Warmer/Kleppe, The Object Constraint Language, 2E: Getting Your
Models Ready for MDA

White, Software Configuration Management Strategies and Rational
ClearCase®: A Practical Introduction

The Component Software Series
Clemens Szyperski, Series Editor
For more information, check out the series web site at
www.awprofessional.com/csseries.

Allen, Realizing eBusiness with Components

Apperly et al., Service- and Component-based Development: Using the
Select Perspective™ and UML

Atkinson et al., Component-Based Product Line Engineering with UML

Cheesman/Daniels, UML Components: A Simple Process for Specifying
Component-Based Software
Szyperski, Component Software, 2E: Beyond Object-Oriented
Programming

Whitehead, Component-Based Development: Principles and Planning
for Business Systems

The Addison-Wesley Object Technology Series
Grady Booch, Ivar Jacobson, and James Rumbaugh, Series Editors
For more information, check out the series web site at www.awprofessional.com/otseries.

www.awprofessional.com/otseries
www.awprofessional.com/csseries

Succeeding with Use Cases

Working Smart to Deliver Quality

Richard Denney

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in all
capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchas-
es or special sales, which may include electronic versions and/or custom covers and content
particular to your business, training goals, marketing focus, and branding interests. For more
information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.awprofessional.com

Library of Congress Catalog Number: 205920918

Copyright © 2005 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458

ISBN 0-321-31643-6

Text printed in the United States on recycled paper at R.R. Donnelley and Sons Company in

Crawfordsville, Indiana.

First printing, May 2005

www.awprofessional.com

Preface xiii

Acknowledgments xxv

PART 1 QUALITY FUNCTION DEPLOYMENT 1

Chapter 1 An Introduction to QFD: Driving Vision Vertically
Through the Project 5

The Language Gap 6

QFD in Use Case-Driven Projects 8

Business Drivers in QFD 9

The “Chaos” of Projects and the Importance of Prioritization 11

Running a QFD Workshop: Mega Motors Example 12

Workshop Overview 14

Identify Use Cases 23

Analyze Relationship of Use Cases to Business Drivers 26

Analyze Correlations Between Use Cases 32

First Matrix Complete; QFD Workshop Status Check 34

“Flipping the Matrix”: Deployment to Quality Requirements 35

Flipping the Matrix: Deployment to Vehicle Components 43

Workshop Conclusion and Summary 45

Chapter Review 47

v

Contents

Chapter 2 Aligning Decision Making and Synchronizing Distributed
Development Horizontally in the Organization 49

Using QFD to Align Decision Making Horizontally Across
a Company 50

A Brief Overview of Oil and Gas Exploration 50

The Problem: Selecting A Shared Earth Modeling
Development Kit 51

O&G’s QFD Road Map 52

Matrix 1: Prioritize Use Cases 54

Matrix 2: Prioritize Non-Functional Requirements 56

Matrix 3: Prioritize Earth Modeling Techniques 58

Matrix 4: Prioritize Shared Earth Modeling Dev Kits 59

Example Conclusion and Summary 60

Using QFD to Synchronize Distributed Development
Horizontally Across Component Teams 61

Entropy Happens in Distributed Software Development 61

Planning the Length of Iterations and Number of Use
Cases per Iteration in Distributed Software Development 64

Chapter Review 72

PART 2 SOFTWARE RELIABILITY ENGINEERING 75

Chapter 3 Operational Profiles: Quantifying Frequency of
Use of Use Cases 77

Operational Profile of Use Case Scenarios 78

Decision Graphs 79

Pareto Principle and Guesstimates 82

Working Smarter: Scenarios of a Use Case 85

Time-Boxing an Inspection 86

Bottom-Up Estimation of Tests Needed per Scenario 87

Operational Profile of a Use Case Package 90

Sanity Check Before Proceeding 90

Use Case Relationships 91

Sales Order Example 92

vi CONTENTS

Probability that Include/Extend Use Cases Are Actually Used 98

Concluding Thoughts About Use Case Relationships 103

Working Smarter: Use Case Packages 104

Time-Boxing for a Package of Use Cases 104

Transitioning from High-Level to Low-Level Planning 105

Air Bags and Hawaiian Shirts 107

Extending Operational Profiles to Address Critical Use Cases 109

What Does “Critical” Mean? 109

It’s a Calculated Risk 110

Hardware Widget Example 111

Profiling Risk in Use Cases 112

What Have You Got to Lose? 118

Chapter Review 118

Chapter 4 Reliability and Knowing When to Stop Testing 121

What Is “Reliability”? 122

Software Reliability is User-Centric and Dynamic 123

Software Reliability Is Quantifiable 124

Reliability: Software Versus Hardware 126

Failure Intensity 126

Visualizing Failure Intensity with a Reliability Growth Curve 127

Selecting a Unit of Measure for Failure Intensity 128

Setting a Failure Intensity Objective 129

But What’s the Right Failure Intensity Objective? 131

The Swamp Report 138

Dashboard Layout 139

Establish Planned Test Coverage as per Operational Profile 141

Initialize Dashboard Before Each Test Iteration 142

Update the Dashboard at the End of Each Test Iteration 145

Tracking the Swamp Through Time 152

Determining the Effectiveness of Your SRE-Based Test Process 153

Final Notes on DDE 156

Chapter Review 156

CONTENTS vii

PART 3 MODEL-BASED SPECIFICATION (PRECONDITIONS,
POSTCONDITIONS, AND INVARIANTS) 159

Chapter 5 Use Case Preconditions, Postconditions, and Invariants:
What They Didn’t Tell You, But You Need to Know! 161

Sanity Check Before Proceeding 162

A Brief History of Preconditions and Postconditions 163

Calculating Preconditions from Postconditions 165

Use Case Overview 165

Step 1. Find a “Risky” Postcondition: Model as an Equation 166

Step 2. Identify a Potential Failure: State an Invariant 167

Step 3. Compute the Precondition 168

Why Does This Work?! 169

Modeling State Change 172

Model-Based Specification 174

Reasoning About State Through Time 174

Use Case Overview 175

Step 1. Find “Risky” Postconditions: Model as Equations 176

Step 2. Identify a Potential Failure: State an Invariant 176

Step 3. Calculate Preconditions 178

Exploring Boundary Condition Failures 180

Step 1. Identify Postconditions Associated with Boundaries
of Operation 180

Step 2. State an Invariant the Postconditions Should
Not Violate 181

Step 3. Calculate Preconditions 181

Further Thoughts: Preconditions, Postconditions, and
Invariants in Use Cases 183

Preconditions and Postconditions of Individual Operations
Versus the Use Case as a Whole 183

Scope of Preconditions and Postconditions: Scenario
Versus Whole Use Case 184

Postconditions Can Have More than One Precondition 185

viii CONTENTS

Weak and Strong Preconditions 185

Types of Invariants in Use Cases 187

Working Smart in How You Apply What You’ve Learned 191

Prioritize Where You Apply Model-Based Specification 192

Stick to Numeric Problems 193

The Absolute Least You Need to Know: One Fundamental
Lesson and Three Simple Rules 193

Chapter Review 195

Chapter 6 Triple Threat Test Design for Use Cases 197

“Triple Threat” Test Cases? 197

Threat #1—The Precondition 198

Threat #2—The Postcondition 198

Threat # 3—The Invariant 198

Applying the Extended Use Case Test Design Pattern 200

Step 1. Identify Operational Variables 201

Step 2. Define Domains of the Operational Variables 202

Step 3. Develop the Operational Relation 203

Step 4. Build Test Cases 209

Closing Thoughts 213

Chapter Review 214

PART 4 USE CASE CONFIGURATION MANAGEMENT 217

Chapter 7 Calculating Your Company’s ROI in Use Case
Configuration Management 221

Overview of ROI 221

Requirements Management Tools 223

Calculating the ROI 223

Conventions and Starting Assumptions 224

Assumptions About Cost of a Fully Burdened Employee 224

Initial Actual Data about Use Cases 225

CONTENTS ix

The Cost 225

Cost of Tools, Training, Consulting, and Rollout Team 226

Cost of Tool Use Overhead 226

Cost of Added Review and Rigor 227

The Benefits 229

Savings from Staff Working more Efficiently 229

Savings from Avoiding the Cost of Lost Use Cases from
Staff Churn 230

Savings from Avoiding Cost of Unnecessary Development 231

Savings from Reducing the Cost of Requirements-
Related Defects 232

Bottom Line: Benefit to Cost Ratio 236

Dealing with Uncertainty in the Model 237

Chapter Review 239

Chapter 8 Leveraging Your Investment in Use Case CM in Project
Portfolio Management 241

What this Chapter Is (and Isn’t) About 242

The Good Thing About Use Cases… 244

Use Case Metadata (Requirements Attributes) 246

How Are You Currently Invested? 246

Inventory of Projects 247

Metadata Needed for Use Cases 250

Assign Use Case to Project and Estimate Effort 251

Checking the Mix 254

Managing the Pipeline 255

Full Time Equivalent (FTE) Models of the Project Portfolio 256

Run Chart of FTEs Through Time 257

Tracking the Status of the Portfolio via Use Cases 259

Status of Use Cases 260

Tracking the Progress of Projects with the Status of Use Cases 261

Chapter Review 264

x CONTENTS

PART 5 APPENDICES 267

Appendix A Sample Use Case 269

Appendix B Bare-Bones Project Portfolio Database and Use
Case Metadata 273

Bare-Bones Portfolio Database 273

Use Case Metadata 274

Checking the Mix of Project Types 274

Appendix C Run Chart of FTEs Required by Project Portfolio 277

Query to Sum Use Case Effort by Project Code 277

Query to Prepare Data for Import to Microsoft Project 280

Appendix D Reports for Tracking Progress of Projects in Portfolio 283

Metadata for Use Case Status 283

Report for Tracking Status of Projects in the Portfolio
by Use Case Status 284

References 287

Index 293

CONTENTS xi

This page intentionally left blank

If the Unified Software Development Process (USDP) were a coloring book,
I’m afraid I’d be characterized as one of those kids who just can’t color with-
in the lines. I’ve been using use-case-like “things” for quite some time,
although they may have been called something else: workflows, scenarios
when Object Modeling Technique (OMT) came out, and then eventually
use cases. But the funny thing is, more often than not I wasn’t using them
like the USDP described them being used. Rather, I was combining them
first with this technique, and then that one. It’s not that I was trying to be a
rebel; use cases just seemed to fit in nicely with other techniques to solve a
problem. Eventually, as the USDP matured, I began to notice that others
were starting to mention QFD in conjunction with use cases and discuss
operational profiles of use cases. Scott Ambler added project portfolio
management to his Enterprise Unified Process, an extension to USDP; and
preconditions and postconditions actually became an official part of use
cases. It finally occurred to me: other people were coloring outside the lines
too! The motivation for this: problems that were best solved with tech-
niques that were not a part of USDP proper; problems for which other dis-
ciplines already had solutions.

It was this realization that led to this book: that my experiences with disci-
plines, such as QFD, Software Reliability Engineering, Model-based
Specification (preconditions, postconditions, and invariants), Requirements

xiii

Preface

Configuration Management, and Project Portfolio Management combined
with use cases might benefit others in the use case development community.

This book presents what I hope you will agree is a whole new set of per-
spectives on use case-driven development. Innovation, solutions to prob-
lems, and ways of working smarter often arise when ideas from multiple
areas are combined. As use cases continue to mature, future improvements
in use case-driven development are likely to arise from just such cross-pol-
lination of use cases with other disciplines of software engineering. This
book looks at four areas that focus on quality engineering.

1. Quality Function Deployment (QFD)

2. Software Reliability Engineering

3. Model-Based Specification (Preconditions, Postconditions, and
Invariants)

4. Requirements Configuration Management/Project Portfolio
Management

From each discipline, the book pulls practical, 20/80, “high bang for the
buck” ideas that help you and your organization work smart to deliver qual-
ity products in use case-driven development.1

Overview of Parts and Chapters

The book is organized into four parts—one per quality engineering disci-
pline—with two chapters each. Here’s an overview of what you’ll find in
each part of the book.

xiv PREFACE

1 “Quality” as used in this book is the project stakeholders’ (especially customers’) relative valua-
tion of scope (functions and features), schedule (speed of delivery to the customer), cost and
degree of defect-free operation (i.e. reliability). This is the same definition used by Jim Highsmith
(2000) and others in the software quality arena.

Part 1—Quality Function Deployment

Like it or not, software development is increasingly becoming a team sport!
And it’s a game being played on a “two dimensional field.” Chapter 1, “An
Introduction to QFD: Driving Vision Vertically Through the Project,” intro-
duces QFD, a team-oriented product-planning tool that is used to translate
business drivers into the technical requirements and design aspects of a
product. You will learn how to use QFD in use case-driven development as
a mechanism for moving vision vertically—the first dimension of the play-
ing field—through projects starting at the senior management/marketing
level, where vision is hatched and business priorities are being set, down-
ward to the development team level, so that the product that is released is
true to the original vision and business priorities.

The second dimension in which the “team sport” of use case-driven devel-
opment is played out in a company is horizontally. Chapter 2, “Aligning
Decision Making and Synchronizing Distributed Development
Horizontally in the Organization,” looks at the factors that make use case-
driven distributed development difficult and the combined use of QFD and
use cases to align decisions and synchronize use case-driven development
horizontally across multiple component or product teams, or business
groups in a company. You’ll learn how to use QFD and simple optimization
problem-solving tools to find the optimum duration for a development
iteration and the optimum set of high-priority use cases that can be imple-
mented in that time across distributed teams.

Part 2—Software Reliability Engineering

Software Reliability Engineering (SRE) is about increasing customer satis-
faction by delivering a reliable product, while minimizing engineering costs.
Use case-driven development and SRE are a natural match, both being
usage-driven styles of product development. What SRE brings to the party
is a discipline for focusing time, effort, and resources on use cases in pro-
portion to their estimated frequency of use or criticality, called an opera-
tional profile. In Chapter 3, “Operational Profiles: Quantifying Frequency of
Use of Use Cases,” you’ll learn how to build an operational profile for the
scenarios that make up a single use case and for a package of use cases.
Examples are provided to illustrate the use of operational profiles to enable

PREFACE xv

you to work intelligently in how you plan the activities that affect your
product reliability. The chapter concludes by showing how to extend oper-
ational profiles to address risk profiling of use case packages.

Your product has been in final system test for days—or has it been weeks?
Surely it must be time to stop testing and release it! Chapter 4, “Reliability
and Knowing When to Stop Testing,” looks at another important concept
that Software Reliability Engineering brings to use case development: A
concrete way to talk about “reliability.” This includes how to define it,
measure it, set goals in terms of it, and track it in testing. In this chapter,
you will learn how to set quantitative reliability goals in the form of a fail-
ure intensity objective. The development and testing group then tracks
product reliability in system tests against this objective providing a sound
method to determine when the reliability goal has been reached, testing
can terminate, and the product can be released.

Part 3—Model-Based Specification
(Preconditions, Postconditions, and Invariants)

In Chapter 5, “Preconditions, Postconditions, and Invariants: What They
Didn’t Tell You, But You Need to Know!” you are introduced to a time-test-
ed technique for specifying the expected behavior of abstract data types
and objects—model-based specification—and learn how to apply it in a
fresh way to pose sharp questions in use case failure analysis: the analysis
of potential ways a system, specified by a use case, might fail. In doing so,
you’ll learn some things about preconditions and postconditions they for-
got to mention in “Use Case 101.” The chapter concludes with ideas on how
to work smartly in applying model-based specification, including the sec-
tion “The Absolute Least You Need to Know: One Fundamental Lesson and
Three Simple Rules,” which, if you get nothing else from the chapter, will
give you a take away you can apply to any and all use cases right away. The
goal of this chapter is nothing less than providing you a whole new per-
spective on use case preconditions and postconditions.

Not only does the model-based specification with its preconditions, post-
conditions, and invariants provide an integrated basis for use case failure
analysis, taken as a unit they are a veritable triple threat test case. In Chapter
6, “Triple Threat Test Design for Use Cases,” you’ll learn how to take the pre-
conditions, postconditions, and invariants generated from failure analysis

xvi PREFACE

in the previous chapter and design test cases from them using Robert
Binder’s Extended Use Case Test Design Pattern.

Part 4—Use Case Configuration Management

There is no question that a commercial requirements management tool is
useful for use case management; but can it pay for itself at your company?
Chapter 7, “Calculating Your Company’s ROI in Use Case Configuration
Management,” looks at a model to help you calculate the Return On
Investment (ROI) on requirements management tools for use case manage-
ment. Not only will it help you decide if such tools make sense for your
company, it also helps illustrate some of the types of problems configura-
tion management of use cases is meant to address.

In Chapter 8, “Leveraging Your Investment in Use Case CM in Project
Portfolio Management,” you’ll learn how to leverage your company’s
investment in use case CM to provide metrics and reports for what could
well be the most far-reaching, single process improvement possible in your
company: Project Portfolio Management. Project Portfolio Management is
the measured allocation of development resources according to some
strategic plan. You’ll learn how to leverage use case-based metrics and
reports to evaluate the mix of strategic project types in the project portfo-
lio and evaluate if projects are executable in the times specified by the port-
folio, an approach called pipeline management.

Part 5—Appendices

Appendices A through D provide further supporting materials. They pro-
vide more detailed, how-to information that should prove useful as you
read the chapters.

PREFACE xvii

Who Should Read What

This book is for anyone doing use case-driven development who wants to
think outside the box a little to try some new ideas. Here’s some guidance
on who should read what parts and chapters of the book, and what back-
ground you are assumed to have.

Table P.1 provides a guide to the parts and chapters of the book likely to be
of greatest interest based on the role you play in product development. As
is clear from this table, this book has something of interest for just about
every role in product development. A check indicates a topic that is core to
a team role: this is the role that would likely be applying that topic. A plus
sign indicates that understanding of topic is a “plus” for a team role (e.g.,
your role interfaces with team members that would be using that tech-
nique, so your understanding would be beneficial).

Table P.1 Recommended parts and chapters based on your role in product development. A checkmark
indicates that a topic is core to role. A plus sign indicates that understanding of topic is a “plus.”

QFD Software Model-based Configuration/
Reliability Specification Portfolio
Engineering Management

Chapter 1 2 3 4 5 6 7 8

Project Managers � � � � � �

& Program Managers

Product Managers � + � + + � �

Project/Product � + � �

Portfolio Managers

Senior Managers/ � + � �

Upper Management

Marketing � + + �

Testers + � � � � +

Test Managers + + � � + + + +

Software Engineers � + � � � � +

Requirements Engineers/ � + � � � � � +
System Analysts

Anyone doing safety/ + + � � � � +
mission/business
critical systems

xviii PREFACE

QFD Software Model-based Configuration/
Reliability Specification Portfolio
Engineering Management

Chapter 1 2 3 4 5 6 7 8

Anyone doing + + � �

“Design by Contract”

Anyone facilitating � �

team meetings

Academics teaching � � � � � � � �

class in Software Engineering

Knowledge About Use Cases

The only assumption made about your background as a reader is that you
are already familiar with use cases. The scope of the book does not include
an introduction to use cases, UML, Unified Software Development Process,
and so on. Many excellent books already cover these topics.

Knowledge About the Other Software
Engineering Disciplines

Previous knowledge of the other software engineering disciplines dis-
cussed in this book is not necessary. Do keep in mind that whole quality
engineering disciplines have been condensed down to two chapters each.
These are disciplines that merit whole books, and have large conferences
and research and development communities, so what you will see is only a
small part of what are large disciplines, but they are parts that yield a good
bang for the buck for the use case community. Ample references have been
provided to allow you to explore topics in more depth if you desire. A goal
of this book is to increase the visibility of these other disciplines to the use
case community, and I think references are key to this goal.

For Those Who Hate Math

Two parts of the book—Part 2, “Software Reliability Engineering,” and
Part 3, “Model-Based Specification”—have a little math in them.

PREFACE xix

Part 2 involves a little probability and an equation or two, all of which you
will be walked through carefully, so no prior background in probability is
needed.

Part 3—especially the first chapter—may be the book’s most challenging
technically, more due to the concepts than the math. The only assumption
made is that you are familiar with arithmetic and simple algebra.

Unified Software Development Process

All the ideas in this book can be applied whether or not you are following
the Unified Software Development Process (USDP). If you are, however, fol-
lowing USDP you might find Table P.2 useful: It provides guidance on phas-
es of the USDP in which you will find the application of the techniques of
each chapter most beneficial. A checkmark indicates the phase in which
the techniques as exemplified in the chapter would likely occur. A plus sign
indicates other phases in which the techniques could be applied, but which
are not specifically illustrated in the chapter.

Table P.2 Suggested phase of Unified Software Development Process for application in each chapter.
A checkmark indicates use as described in chapter. A plus sign indicates additional uses not
specifically covered in the chapter.

Chapter Inception Elaboration Construction Transition

QFD 1 � + + +
2 � �

Software Reliability 3 � � �

Engineering 4 � � �

Model-Based 5 � +
Specification 6 � � �

Configuration / 7 N/A N/A N/A N/A
Portfolio Mngt. 8 N/A N/A N/A N/A

To review Table P.2, moving top to bottom, QFD is a technique that by
design is capable of being applied in all phases of a project. The example
provided in Chapter 1 illustrates its use during inception in helping a team

xx PREFACE

decide the focus of a release. The application of QFD in Chapter 2 is
focused on planning and coordinating use case distributed development
and would be used in elaboration and/or construction.

Chapter 3 is concerned with operational profiles that would be created
during elaboration, then their results used in all subsequent phases for pri-
oritization of effort and resource. The setting of reliability goals discussed
in Chapter 4 would occur as part of planning done in elaboration. The use
of those reliability goals would then be used in tracking reliability growth of
the product during testing in construction and transition.

Having used QFD or operational profiles to identify use cases that were fre-
quently used, critical and/or important to business drivers, the model-
based specification techniques of Chapter 5 would be used in elaboration
for failure analysis of the system as described by those key use cases. In
construction, those same techniques could also be used in specifying class
or component interfaces using design by contract. In Chapter 6, test plan-
ning based on the work of Chapter 5 would be done as part of late elabora-
tion or early construction. The test cases would be used in all subsequent
phases as a basis for testing.

Finally, the calculation of ROI on a requirements configuration manage-
ment tool, covered in Chapter 7, and project portfolio management, cov-
ered in Chapter 8, would occur as separate programs apart from any single
software product release and so are not applicable to specific phases per se.
The results of project portfolio management would of course be used as
part of the input to the inception phase of all projects.

How Parts of This Book Relate

Each of the four parts of this book—like the disciplines they pull from—are
standalone and can be read and used independently of one another. A few
of the techniques can, however, be leveraged off of one another.

Project portfolio management (Part 4, Chapter 8) is over-arching in rela-
tionship to all other topics in this book in that stresses in a company due to
“too much work, too little time” affect virtually every other aspect of soft-
ware development and the quality of products produced. A company that

PREFACE xxi

xxii PREFACE

has not sorted its vital few projects from the trivial many is likely to have
staff with neither the interest nor time for new innovative ideas.

The biggest bang for the buck in applying the ideas of Part 3, “Model-Based
Specification,” will come from application to use cases that are frequently
used and/or are critical in nature. The techniques on describing opera-
tional profiles in Part 2, “Software Reliability Engineering,” are ideal for
identifying such use cases, as are the prioritization techniques of Part 1,
“Quality Function Deployment.”

It is also possible to use frequency of use information or criticality informa-
tion obtained from an operational profile (Part 2, “Software Reliability
Engineering”) as one of many business drivers used to prioritize use cases
with QFD. An example of this is provided in Chapter 2, “Aligning Decision
Making and Synchronizing Distributed Development Horizontally in the
Organization.”

Conversely, you may find that a QFD matrix (Part 1, “Quality Function
Deployment”) is an ideal tool for building informal operational profiles for
a product (Part 2, “Software Reliability Engineering”).

What This Book Is Not

As with the scope of software projects, it’s probably as important to be clear
about what this book is not as it is what it is. I’ve touched on a couple things
already, but they are worth reiterating.

The book does not provide an introduction on use cases: what they are,
their benefit, or how to write them.

Nor will this book provide an overview of UML or the Unified Software
Development Process. In general, this book is largely software develop-
ment life-cycle neutral. Some of the ideas presented in the book actually
work just as well with Extreme Programming’s (XP) Stories as they do with
use cases, and these will be pointed out.

While you will be getting a good impression of what the other disciplines
are about—QFD, Software Reliability Engineering, Model-Based
Specification, CM/Project Portfolio Management—the intent is not to
present a definitive tutorial on any of these topics. Having said that, what
you do get in this book from a use case-driven development standpoint
may be all you ever need.

Richard Denney
Austin, Texas
www.software-quality-consulting.com

PREFACE xxiii

www.software-quality-consulting.com

This page intentionally left blank

I’d like to thank Mary O’Brien, Chris Zahn, Brenda Mulligan, Christy
Hackerd, and the rest of the team at Addison-Wesley Professional for the
opportunity and their support in publishing this book.

I’d also like to acknowledge the members of the review team for their valu-
able feedback as the book was being written. It’s a better book because of
them. In alphabetical order, they are: Daryl Kulak, Dean Leffingwell,
Granville Miller, Sam Supakkul, Lauren Thayer, Geri Schneider Winters,
and Lian Zerafa.

xxv

Acknowledgments

This page intentionally left blank

Managing Use Case-Driven Development in “2D”

“Even if you have the right people in the right jobs, unless you
synchronize their efforts, and link them to the business priorities,
you do not have an edge in execution. The money making doesn’t
happen…”

—Ram Charan, What the CEO Wants You to Know (Charan 2001)

There is today a problem which characterizes, or maybe I should say com-
plicates, software development. It would be convenient if this problem
were technical in nature: We as software engineers are good at tackling
those. But, unfortunately, it is a problem that many software engineers fear:
It is a people problem. It is the problem of how to get people aligned, seeing
a common vision, thinking alike, and synchronizing their efforts. Like it or
not, software development is increasingly becoming a team sport
(Leffingwell and Widrig 2003).

1

Part 1

Quality Function
Deployment

And if software development is a team sport, the game is being played on a
two-dimensional field1:

• Vertically, companies must be able to move product vision at
the senior management/marketing level, where business pri-
orities are being set, downward to the team level, so that the
product that is released is true to the original vision and busi-
ness priorities.

• Horizontally, companies must be able to synchronize multi-
ple project teams, each representing separate components or
even whole products, so that they work on the same use
cases, in the same order of priority, and with the same vision.
In short, distributed software development.

In these chapters, we will look at the pivotal role use cases play in address-
ing this problem of developing software as a team sport and introduce
the use of Quality Function Deployment (QFD) as a tool for prioritizing,
aligning, and synchronizing use case-driven development in these two
dimensions.

QFD is a product-planning tool that is used to translate business drivers
into the technical requirements and design aspects of a product. QFD’s
roots reach back to Japan’s shipbuilding and automotive manufacturing
industries in the late 1960s as part of a broader interest in improved
quality control by pioneers such as Yoji Akao.2

The interest in QFD in the West was stimulated by reports of the achieve-
ments made by Toyota through its application between 1977 and 1984,
which included a reduction in product development costs, cycle time, and
rework problems—and, most importantly, the delivery of products that

2 PART 1

1 There is a third dimension in which the game is played, but which we won’t address here, and that
is time. Given that few systems are built “big bang” in one release, companies must learn to man-
age product vision, requirements, and decisions through time (“Does anyone remember why we
designed it this way?!”), across staff changes and company reorganizations, mergers, and acquisi-
tions. In a very literal sense, the team and company that released version 1.0 of a product can be
completely different from the one that releases version 5.0.
2 If you are interested in reading more about the history of QFD, see Akao (1997).

customers wanted. Of those taking note of Toyota’s success were the big
three U.S. automakers. Their interest in QFD in the 1980s as part of a larger
program to improve product quality helped spread interest in the U.S.

Today, though originally developed for manufacturing industries, QFD-like
ideas are being used successfully throughout the world for all sorts of appli-
cations, including software development, the services industry, and
process management, and is considered an essential part of the quality
improvement toolkit.

As with the other disciplines in the other parts of this book, QFD is a topic
for a book on its own. In fact, based on the number of available titles, it is a
topic worth hundreds of books. But while the QFD process is standardized
and documented for manufacturing, there is no standard for its application
in software development,3 much less use cases specifically.4 So while yet
another book on QFD is probably not needed—and as Karl Wiegers has
noted, few software development organizations seem willing to undertake
the full rigor of QFD, anyway—some insights into the 20% that yields 80%
of the benefit in conjunction with use case driven development is very
much needed.

Chapter 1, “An Introduction to QFD: Driving Vision Vertically Through the
Project,” introduces you to QFD in general and focuses on the vertical
dimension of software development as a team sport. In it, you

• Are introduced to the basic mechanics of QFD.

• Learn the difference between business drivers, user require-
ments, and system requirements, and the use of QFD to link
and prioritize them vertically in the company.

• Get a lesson from QFD on the importance of prioritized busi-
ness drivers and why simply identifying business drivers isn’t
enough.

QUALITY FUNCTION DEPLOYMENT 3

3 Cohen (1995) provides a good starting place for a brief overview of its application to software.
Haag et al. (1996) survey several software vendors’ use of QFD in their system development life
cycle. Details on actual application, however, are not given.
4 Lamia (1995) looks at a variety of possibilities for incorporating QFD into OO design, including
use cases.

• Learn how to analyze use cases and quality requirements
(nonfunctional requirements) in terms of how they correlate
with one another, positively or negatively.

• Learn how to run a QFD workshop; although an individual
can certainly use QFD as a tool, its biggest value is as a tool for
team product planning and vision alignment.

Chapter 2, “Aligning Decision Making and Synchronizing Distributed
Development Horizontally in the Organization,” addresses the horizontal
dimension of software development as a team sport (i.e., use case-driven
distributed development across multiple component or product teams).

In this chapter, you will:

• See QFD applied to two software development examples from
the oil and gas industry, again reinforcing the theme of QFD
as a team problem solving/decision-making tool.

• Work through an example of QFD used as a mechanism for
aligning decision making horizontally cross-company. This
example will also illustrate a QFD process that begins with use
cases and works backward to identify the business drivers (not
a part of “standard” manufacturing-based QFD, but some-
thing you may need to do in real-life software development).

• Learn the value added by QFD to the nonfunctional require-
ments of a suite of fully dressed use cases.

• Learn three factors that make use case-driven distributed
development difficult.

• Discover how to use QFD to synchronize use case-driven dis-
tributed development and how to find an optimum duration
for a development iteration with an optimum set of high-pri-
ority use cases that can be implemented in that time across
distributed teams.

4 PART 1

One good thing about small, one-person software development efforts is
that the person with the ideas and the product’s vision is the same person
that specs out the product and writes the code. There was a time when I
fancied that the big problems in software development were the technical
problems; problems that involved specs, design, and code. At some point,
my opinion on this started to change as I began to notice that the thorny
problems folks encounter in projects are quite frequently people problems.
Given that few projects are one-person shows anymore, how do you point
a group of people in the same direction, help them envision a problem in
the same way, and synchronize and coordinate their efforts toward a com-
mon vision? That, it finally occurred to me, was the real problem in soft-
ware development.

One form of this “people problem” that large projects face is how to move
product vision and its associated business drivers, hatched at the senior
management/marketing level, vertically downward to the project team
level so that the product that is built, tested, and released is true to that
original vision and business drivers.

5

1

An Introduction to QFD:
Driving Vision Vertically

Through the Project

The Language Gap

If you’ve ever been in a room where both upper management/marketing
types and technical geeks are present at the same time, you know there is
often a language gap. While one is talking about the need to grow revenue
for this and that customer segment, the other is saying, “Just tell me what
to build!!”

A way to understand this problem is by applying Karl Wiegers’ levels of
requirements types. In his article, “10 Requirements Traps to Avoid,” Karl
Wiegers argues that a fair amount of confusion comes about in projects
because of the failure to recognize the existence of “several types of require-
ments, all legitimate and all necessary.” To paraphrase, these requirements
types are business drivers1, user requirements, and system requirements (i.e.,
functional and quality/non-functional requirements of the system’s soft-
ware and hardware).

Business drivers emanate from the point of view of the developing organi-
zation and provide a clear sense of why a project is being undertaken and
the value the product will provide. User requirements, on the other hand,
reflect the point of view of the user, describing what the user requires in
terms of tasks or goals to be accomplished.2 Finally, system requirements
represent the product from the point of view of the system itself and what
is required of its software and hardware to support the user’s requirements.

6 CHAPTER 1

1 Wiegers (1999) actually uses the term “business requirements,” but I’ve found this term has a dif-
ferent meaning for some people than what I think Wiegers intends: for some it is akin to business
rules used in databases (i.e., a business requirement describes some real-world constraint on the
business). I now use the term business drivers as a substitute for business requirements as most
people clearly connect with this (“What is driving this project?”).

2 No distinction will be made here between users and customers, though it is an important distinc-
tion of which to be aware. When customer and user are not one and the same, meeting the cus-
tomer’s requirements is a necessary, but not sufficient goal, for unhappy users will likely sour
future sales. Gauss and Weinberg (1989) illustrate this point with toy sales: if either the parent (the
paying customer) or the child (the user) is dissatisfied, a toy will not succeed in the market place.
For a software example of this, in the oil and gas industry, IT departments are often customers for,
but typically not users of, products designed for oil and gas exploration. In such cases, there is a
win-win situation that must be achieved of meeting the customer’s requirements while also meet-
ing the requirements of the user. QFD can be a useful tool for helping identify which of a host of
product features or designs best provides a win-win situation for customer and user alike.

This transition in focus from business to user to system is illustrated in
Figure 1.1, which shows a simplified form of Wiegers’ requirements levels.

AN INTRODUCTION TO QFD: DRIVING VISION VERTICALLY THROUGH THE PROJECT 7

���

����

���	�

�

Figure 1.1 Wiegers’ levels of requirements illustrate the transition in focus in a software project from think-
ing about the business, to the user, to the system.

Beyond a classification of requirements types, the hierarchy of Figure 1.1 is
also a good model for understanding the communication gap that exists
vertically in projects. It’s not that upper management is wrong when they
talk in “biz” speak or that technical geeks are wrong when they just want
someone to tell them the component interface to implement. It is just that
each is dealing with different requirement types of the project, “all legiti-
mate and all necessary.”

Use cases—and their equally low-tech cousins, such as storyboards, XP sto-
ries, workflows—have helped with this problem by providing a lingua fran-
ca for at least the user requirements that are understandable by upper
management, marketing types and technical geeks alike. Looking at Figure
1.1, we see that use cases—as a means of stating a user’s requirements—are
in a pivotal position in the hierarchy, serving as a vertical bridge on the
transition down from the sometimes lofty and vague business perspective
to the sometimes very “down in the weeds” detail of the system perspective.
But sometimes more is needed to help manage this transition from busi-
ness to user to system. That’s where Quality Function Deployment (QFD)
can come in.

QFD in Use Case-Driven Projects

QFD is a tool that can certainly be used by an individual, but its real value
is as a structured approach for team prioritization and decision making. A
team that uses QFD for product planning will emerge with a common
vision of the business drivers, priorities, assumptions, issues, and ques-
tions that need to be addressed.

While the QFD process is fairly standardized for manufacturing, there is no
standard for its application in software development in general, much less
use cases specifically. QFD has received some discussion in the use case
community as a means of prioritizing use cases.3 Used in this fashion, QFD
serves as a tool for linking business drivers to use cases by identifying those
use cases that are best aligned to the business drivers of the project: in QFD
lingo, “deploying” the business drivers to the user requirement level.

What has received less attention in the use case community, however, is the
subsequent use of QFD coupled with prioritized use cases to prioritize
other aspects of software development, such as alternate design approach-
es. This is the second transition of Figure 1.1, from what the user requires
to what is required of the system to support the user. Used in this way, QFD
serves as a tool to identify those aspects of product design best aligned to the
use cases, which are in turn aligned to the business drivers.

Again, while there is no standard, I have found the following combination
of QFD, coupled with the hierarchy of Figure 1.1, to be of value:

1. QFD used as a framework to move vision and its associated business
drivers vertically through the project to the user requirement level as
a prioritized set of use cases.

2. QFD, coupled with prioritized use cases, as a framework for prioritiz-
ing and decision making in terms of what is required of the system.

This approach is illustrated in Figure 1.2, in which QFD is used as the
mechanism to transition vertically from thinking about the business, to

8 CHAPTER 1

3 Wiegers (1999) references QFD as a means of prioritizing use cases. Wyder (1996) also provides an
example.

thinking about the user, to thinking about the system, a la the hierarchy of
Figure 1.1.

In the diagram of Figure 1.2, arrows show the business drivers of a project
as input to the first QFD matrix whose output—a prioritized list of use
cases—serves as the subsequent input to other QFD matrices, for example,
to prioritize alternate designs for a product.

AN INTRODUCTION TO QFD: DRIVING VISION VERTICALLY THROUGH THE PROJECT 9

����

������

��� �	������ �	���

��� �	���
����
 �����
	�����

�����������
��� �	���

�����������

����
 �
�����
	�����

���
���

������

�
��
�
��
��

�
��
�
��
��

Figure 1.2 A general framework for applying QFD to use case-driven projects.

We are going to look at an example of how QFD is used as a tool for prod-
uct planning, helping a team to make this vertical transition as part of that
planning, but first we’ll talk about business drivers a bit more. Given that
the adage “garbage-in, garbage-out” applies to QFD, it’s worth spending
some time talking a bit more about that first, initial input to the QFD
process of Figure 1.2: the business drivers.

Business Drivers in QFD

In standard manufacturing-based QFD, the process starts with the Voice Of
The Customer or Customer Needs, couched as what are often called quality
requirements; hence, the origin of the “Q” in QFD. These “customer needs”

often sound like the ambiguous non-functional requirements we are
warned against in software engineering:

• System must be easy to use

• System must be reliable

• System must respond quickly to inputs

In QFD, however, these ambiguous sounding quality requirements eventu-
ally evolve into very technical, non-ambiguous requirements. It’s all part of
the process.

As Figure 1.2 shows, however, the QFD process as described in this chapter
starts with business drivers; it is based on the use of QFD as a mechanism
for working vertically through Wiegers’ levels of requirement types, from
business drivers, to user requirements, to system requirements, and even
design. My experience is that a software project is typically driven by a
combination of factors, only some of which are customer needs. For exam-
ple, I’ve seen projects where the prime objective was to explore technology
the company did not understand well as a way to increase understanding
and minimize risk in the long term. That approach is very much associated
with the risk-driven development style of the Unified Software
Development Process or the “Agile” methodologies and is not something
one would typically see in a standard manufacturing QFD example as a
“customer need.” On the other hand, if the business drivers for a project are
strictly limited to making the customer happy, the business drivers will be
a standard QFD “voice of the customer.”

A business driver is something that provides a clear sense of why a project
is being undertaken and the ultimate value it will provide; it’s a force to
which businesses must respond and drives a business’s direction. A busi-
ness driver could be a customer need (system must be reliable) or an inter-
nal company objective (minimize risk by exploring technology not well
understood). Ideally, business drivers are win-win in nature, providing
value for both you and the customer. A business driver that makes money
for you but produces a product the customer is unwilling to pay for is not
terribly useful, and a customer need that does not line up with your prof-
itability is a money-losing situation for you.

10 CHAPTER 1

Business drivers as used in QFD are a way to make a project’s vision tangi-
ble and provide a basis for prioritizing virtually every activity of the project.
In a way—and this is very important—in QFD the prioritization of the busi-
ness drivers is in a sense a business driver itself. As the prioritization of
business drives is the crucial beginning of the QFD process (mistakes made
here will propagate forward through the rest of the process) it is worth a
closer look.

The “Chaos” of Projects and the Importance of
Prioritization

QFD boiled down to simple mechanics is in large part about establishing
links between things (QFD is an ideal tool for traceability)—in our software
project model the links are from business drivers, to use cases, to aspects
and parts of the system—and about prioritizing those links.

Prioritization is so ubiquitous to project management that it’s easy to over-
look its importance. We prioritize because we can’t do it all (we have time
for X or Y, but not both) or because a product can’t be all things (it can be X,
or it can be Y, but it can’t be both simultaneously). We prioritize as a way of
deciding to follow one path or another.

You may be aware that some systems, both natural and man-made, pro-
duce radically different outcomes when started with just slightly different
initial conditions. In the relatively new field of chaos theory this is called
deterministic chaos. These systems are deterministic: given the same start-
ing state and inputs they produce the same result every time. It is just that
even very slight changes in the starting state and inputs can result in radi-
cally different results. This is what makes weather prediction so difficult;
the weather is chaotic in this very sense.

I’m convinced that software projects are chaotic systems too, and you may
well agree! If you could take a software project, clone it, and start the copies
with the same business drivers, but with different priorities, you might find
the projects producing significantly different products.

Let’s take a very concrete example of this that will set us up for our QFD
example. How many of you have bought a car because it is ugly? Raise your
hand. I don’t see any hands. OK, how many of you have bought a car

AN INTRODUCTION TO QFD: DRIVING VISION VERTICALLY THROUGH THE PROJECT 11

because it is fuel in-efficient…uses too much gas? Still no hands. How
about cost…have you ever bought a car because it cost too much money?
Safety…have you ever bought a car because it’s un-safe? By and large we all
buy cars using the same business drivers: we look at the gas mileage, how
much it costs, what it looks like, safety, and so on. If we all buy cars using
the same business drivers, why don’t we all drive the same car? Priorities.
We place different priorities on the business drivers, and those priorities
result in radically different decisions about the cars we own and drive.

While it may be OK for us all to drive around in different cars, if we are an
engineering team designing next year’s new model car, we must work from
the same set of business drivers and with the same priorities.

I was helping facilitate a working session once for a cross-company pro-
gram composed of several separate product teams working in concert. The
group was made up of project managers, product managers and/or techni-
cal leads from each product line. I had the group start by listing the busi-
ness drivers for the program. In just a few minutes the group was able to
produce a handful of drivers for the project. Quick agreement. Slam dunk.
They were ready to get going with project planning issues! But before let-
ting the group move ahead, I asked them to take just a moment more to pri-
oritize the list of business drivers in rank order. I had each person work
alone in silence, then come to the front and write the business drivers on
the board in priority order. While the group readily agreed on the business
drivers, their priority level was another matter. Nearly an hour later, the
group was still trying to reach agreement on this matter of priorities. It had
become apparent that unless a consensus was reached, it was unclear
whether this program was going to wind up building a Hum Vee, a Harley,
or something in between (metaphorically speaking, that is; this was in the
oil and gas industry).

Running a QFD Workshop: Mega Motors
Example

Unless you are already somewhat familiar with QFD, all this probably
sounds a bit nebulous, so it’s time for an example. While QFD can certain-
ly be used as a tool by an individual, its biggest value is as a tool for team

12 CHAPTER 1

product planning, so our example follows a development team in a work-
shop setting. For our example, we’ll take a use case and QFD-driven
approach to thinking about the design of an automobile; actually, a video
storyboard about an automobile.

Storyboarding is a great requirements engineering technique for eliciting
what Leffingwell and Widrig call “Yes, but…” reactions from a customer.4

The effectiveness of storyboards was demonstrated for me by a colleague
who successfully used them in the oil and gas industry on a reinvent-the-
paradigm project that proposed to change radically how the user
approached their job.5 A storyboard was used as an effective tool to com-
municate both to the customer and the project team what life would look
like in this new vision of the world.

There are a number of goals for this example of which I’d like you to be
aware. First and foremost, I want to illustrate QFD’s use as a tool for plan-
ning the focus of a release. What better way to demonstrate this than with
an example from the industry that helped popularize QFD, allowing com-
panies like Toyota to plan for products customers would want to purchase.

The example also needs to demonstrate the basic parts and process of
working with the QFD matrix without the domain of the problem getting in
the way. This example—creation of a storyboard for a new vehicle—has the
benefit that most people are familiar enough with automobiles to recog-
nize whether the QFD process is producing results that really make sense
or not. And it is simple enough to avoid getting bogged down in or distract-
ed by the complexities and realities of creating a software system, allowing
you to focus on learning QFD. The same goal could have been achieved
with familiar examples, such as an ATM system or banking system, but they
are already high mileage examples in the use case literature (pun definitely
intended).

And finally, whereas we may be accustomed to associating use case-driven
development with software, there is certainly no reason it cannot be
applied elsewhere, such as in the design of hard-goods and services. This
example will be novel in that respect.

AN INTRODUCTION TO QFD: DRIVING VISION VERTICALLY THROUGH THE PROJECT 13

4 See Leffingwell and Widrig’s (2003) chapter on storyboarding.

5 Thanks go out to Edward Pierce and his usability team.

For a real life example of use cases applied to the development of drive-by-
wire cars at Volvo, see Johannessen et al.’s Hazard Analysis in Object
Oriented Design of Dependable Systems.

After we’ve looked at QFD in action, we’ll look at examples of QFD applied
to more “standard” software development projects in Chapter 2, “Aligning
Decision Making and Synchronizing Distributed Development
Horizontally in the Organization.”

Workshop Overview

Mega Motors is planning the focus of their next release of their flagship
vehicle. Before full development begins, a project team composed of both
marketing and engineers has been given the task of determining what key
features of the vehicle will be most attractive to the customer. After these
key features have been identified, a video-based storyboard shot with a
mockup will be produced that focuses on these key features in use in a
fashion typical of the customer. The video storyboard will be used with
focus groups to get early impressions and reactions to the proposed new
vehicle features and enhancements.

You have been asked to facilitate an offsite QFD workshop to jump start
and align the thinking of the project team members.

Before the Workshop

As workshop facilitator you meet with hosts of the workshop—Vice
President of Marketing and Vice President of Engineering—the day before
the workshop is to begin. You start by working with them to draft an initial
objective statement for the workshop:

“Determine what key features of the Mega Motors vehicle will be
most attractive to the customer, along with a key use case that will
be used as the basis for a video-based storyboard shot with a
mockup to advertise these key features being used in typical fash-
ion by a typical customer.”

Next, you give a brief overview of the QFD process, and in particular review
the basic components of a QFD matrix (see Figure 1.3).

14 CHAPTER 1

Figure 1.3 Principal components of the QFD matrix, sometimes referred to as the “House of Quality.”

Walking through the diagram of Figure 1.3, you explain to the VPs that QFD
stands for Quality Function Deployment. To make sense of the name, try
this: The “F” in QFD stands for the features and functions of the product.
The goal of QFD is to find the best set of “F” to meet—or deploy (that’s the
“D”)—the goals “Q.”

The QFD matrix is the central tool in QFD; it is sometimes called the
“House of Quality.” The matrix is a tool for establishing links between goals
(the “Q, “which is referred to as Whats in the matrix) and ways to meet or
deploy those goals (the “F,” which is referred to as Hows in the matrix).
These links are captured in the matrix as Relationships between Whats
and Hows (the central part of the matrix).

You also explain that what constitutes the Whats and Hows can change as
you work through the QFD process: the outputs from one matrix (i.e., the
Hows) can become the inputs to another matrix (i.e., the Whats) as illus-
trated in Figure 1.2.

AN INTRODUCTION TO QFD: DRIVING VISION VERTICALLY THROUGH THE PROJECT 15

Prioritization
of “Whats”

“Whats”

Correlation of “Hows”
(The “Roof”)

“Hows”

Relationship
between “Whats”
and “Hows”

Prioritization of “Hows”
(Output)

The Correlation section of the matrix—sometimes called the “roof”6 of the
House of Quality—provides a means of capturing information about Hows
that may interact with one another—either in a positive, reinforcing way, or
negatively, working against one another.

The output of the QFD matrix is a Prioritization of Hows, calculated as a
function of the prioritization of Whats and the strength of relationships
between Whats and Hows.

Finally, you lay out a tentative game plan for working with the project team
(see Figure 1.4).

16 CHAPTER 1

��� ���� ���	�

���
�������

���
�������
����
���
����
�����	�

�������
��	�

������	����
���
����

������	����
�����	�
�������
��	�

���
����
�������

�
�����	�

������	����
�������

�
�����	�

����� ��
�����

�	��������

�
��
�
��
��

�
��
�
��
��

�
��
�
��
��

Figure 1.4 Road map for the Mega Motors QFD workshop.

Working through Figure 1.4, note the following:

1. The workshop will begin by determining a prioritized set of business
drivers for the project (video production).

6 In a traditional QFD “House of Quality” this is drawn to look more like a roof, hence the name.
The slanted look here is an artifact of the matrix implementation in a spreadsheet, a common
method of implementing a QFD matrix.

2. The development team will brainstorm use cases that could be used
as the basis for a storyboard of the vehicle being used in a manner
typical of the customer.

3. The use cases will then be analyzed and prioritized to identify those
that most closely align with the business drivers.

4. Those prioritized use cases will then be used to analyze quality
requirements, such as reliability, safety, and vehicle look and feel, to
see which quality requirements best align with the prioritized use
cases.

5. The same will be done with components of the vehicle—engine,
transmission, body, and so on—to identify those components that
best align with the prioritized use cases.

6. The workshop will conclude with the results of the prioritized quality
requirements and vehicle components being used to sketch out a
video that shows the vehicle in use—as per the highest priority use
case—showcasing the high-priority quality aspects of the high-prior-
ity components of the vehicle (e.g., reliability of the engine, safety of
the interior, sporty feel of the steering, and so on).

Specify Business Drivers

The next day, you begin the QFD session with the usual introductions and
explain to the team that QFD is a type of Joint Application Development
(JAD) session, where ideally you have representatives for each of the roles
that need to be filled in the development of a product: in this case, a team
made up of marketing and engineering, representing the two ends of the
hierarchy of Figure 1.1. You emphasize to the team that while QFD can be
done by a single person, the real value is in the team alignment that occurs
and increased problem solving from the “two heads are better than one”
phenomenon.

You have prepared a QFD “road map” to help the team better visualize the
overall QFD process for the workshop and will use it throughout to orient
the team as to where they are at any given time (see Figure 1.5).

AN INTRODUCTION TO QFD: DRIVING VISION VERTICALLY THROUGH THE PROJECT 17

Figure 1.5 Your location on the QFD road map.

With intros and overview out of the way, you review the workshop objective
statement drafted with the VPs of Marketing and Engineering. In order to
make sure that everyone really buys into this objective statement, you ask
the team for pros and cons on the objective as stated; in doing so you may
bring to the surface tacit issues that have been missed. With minor modifi-
cations in place and a “thumbs up” vote to signify sign-off from all team
members, you are ready to proceed.

What Is Driving the Project?

OK, you ask: what is driving this project (i.e., production of the video story-
board)? The marketing group has done its homework and has identified a
profile of customer types it plans to bring into the focus group. The team
suggests that the business driver for the project is to produce a focus group
video that targets the interests of the following customer profile:

• Young single male

• Young single female

18 CHAPTER 1

��� ���� ���	�

���
�������

���
�������
����
���
����
�����	�

�������
��	�

������	����
���
����

������	����
�����	�
�������
��	�

���
����
�������

�
�����	�

������	����
�������

�
�����	�

����� ��
�����

�	��������

�
��
�
��
��

�
��
�
��
��

�
��
�
��
��

• Married couple with young children

• Double income couple, no kids

• Older, retired couple

Addressing the engineers in the group, you ask if they are comfortable with
this customer profile as a means to drive the project. One question they
have is how do you know these are the right business drivers?

Good question. You reply that in some sense the QFD workshop is a way to
determine if the business drivers are right. Engineers build prototypes all
the time to test ideas. You ask them to think of QFD as a way of prototyping
a project, allowing you to run through a complete product development
cycle quickly, from start (thinking about the business drivers) to end (think-
ing about the final product that results from the business drivers). In fact,
with QFD, what-if analysis is pretty easy, allowing you to essentially simu-
late different projects from start to end, exploring the consequences of dif-
ferent priorities at the business driver or use case levels. In doing this, you
may well learn along the way that the initial business drivers are leading to
results you intuitively feel are not what they should be, in which case, a
reexamination of the business drivers may be in order. As with any proto-
type, the real value of QFD may not necessarily be the artifacts produced
but with the discovery process that takes place. And one discovery could
well be that your business drivers aren’t right.

This prototyping concept appeals to the engineers in the workshop, and
they agree that as a first iteration they can’t think of any better business
drivers.

Prioritize Business Drivers

One last critical step remains: prioritizing the list of customer profiles. As it
turns out, this is also a very good way to test if you have the right business
drivers.

AN INTRODUCTION TO QFD: DRIVING VISION VERTICALLY THROUGH THE PROJECT 19

7 Additional details available in Chapter 8, “Leveraging Your Investment in Use Case CM in Project
Portfolio Management.”

For this, you explain you will be using a technique called Wideband
Delphi.7 This is a group problem-solving technique that is often applied to
project schedule and effort estimation; here you will apply it to prioritizing
the business drivers. You explain that it is an iterative process of first
making anonymous prioritizations individually or in small groups. This is
then followed by “show-and-tell” of individual results, and then group
discussion of any divergence (“This is why I prioritized differently from
you…”). In this process, tacit assumptions and information held by indi-
viduals are brought to the surface for the group as a whole to see. With a
couple of iterations of this process, the group will hopefully converge on an
answer that is better than any individual would have come up with alone.

To start the Wideband Delphi prioritization, you break the team into sever-
al small groups, place them in separate corners of the room, and tell each
they have $100 of virtual money to spend on the customer profiles, allocat-
ing the money in proportion to the relative importance of the customer.
This is a standard prioritization technique used by meeting facilitators and
has been suggested by Todd Wyder for use with QFD in ranking use cases.
This approach has the benefit that it ranks the business drivers via a ratio
scale. The problem with the use of 1-5 or 1-10 type rating scales, which are
traditionally used in QFD,8 is that they are ordinal scales: is a business driv-
er assigned a 5 really five times more important than one assigned 1?9 It has
the added benefit of preventing the ranking of every business driver high-
priority; something marketing folk—indeed all of us—are often wont to do!

After a period of time, each separate group has completed allocation of
their $100 across each of the customer types. You re-assemble the team and
have each group present their results on a flip chart at the front of the
room. Each presentation is followed by discussion, and you also ask the
group to brainstorm the pros and cons of each prioritization as they are
presented. Pro/con analysis is a great tool for surfacing hidden assump-
tions and decision-making criteria at work.10 At the end of the first itera-
tion, three key issues have emerged:

20 CHAPTER 1

8 There is a movement afoot to replace the use of ordinal scales traditionally used in QFD with ratio
scales. The QFD Institute is a source of information on this topic.

9 In QFD prioritization is done from high to low: a score of 5 is better than a score of 1. This is done
to accommodate the arithmetic used in QFD.

10 A meeting facilitation trick I owe to a colleague, Michael Begeman.

1. One group has rated Older, Retired Couple quite high on the list.

• Pro cited: “This group represents a significant portion of
the future demographics.”

• Con cited: “Older, Retired Couple may potentially have
less disposable income in upcoming years.”

2. Another group has placed Married Couple with Young Children high
on their list.

• Pro cited: “This group has traditionally been the strongest
in terms of brand loyalty to Mega Motors.”

3. Another group has placed Double Income Couple, No Kids at the top
of their list.

• Pro cited: “This group has lots of disposable income for
buying vehicles.”

The Wideband Delphi prioritization process has brought to the surface
what the team quickly realizes are actually business drivers in their own
right (i.e., the customer profile for the new Mega Motors vehicle needs to
take into account market size, brand loyalty, and disposable income of each
customer type). As this discovery illustrates, part of the value of QFD is that
it helps bring to light tacit assumptions, hidden agendas, and misconcep-
tions as a team works through a problem. In doing this, information previ-
ously held by individuals surfaces to become part of the team collective
consciousness. This is the process at work, and it’s important to keep a
record of team discoveries as you go.

AN INTRODUCTION TO QFD: DRIVING VISION VERTICALLY THROUGH THE PROJECT 21

Enter Business Drivers into QFD Matrix

With this bit of alignment in place, each small group once again goes to its
corner of the room to re-prioritize the customer profile. After reviewing
each group’s results of the second round, they are finally able to agree on an
allocation of dollars across the list of customer types (see Table 1.1). This
split, they all are willing to agree, is a decent compromise of the new busi-
ness drivers underlying the customer profile (i.e., market size, brand loyal-
ty, and disposable income).11

Table 1.1 $100 in virtual money is allocated in proportion to importance of each customer type based on
the market size, brand loyalty, and disposable income of each customer type.

Customer Type Dollar Amount

Young Single Male $1

Young Single Female $4

Married Couple with Young Children $70

Double Income Couple, No Kids $15

Older, Retired Couple $10

TOTAL $100

At this point, the team has successfully turned a vision and objective state-
ment into a concrete set of prioritized business drivers that can be used for
prioritization and for making trade offs. The business drivers are entered
into the QFD matrix along with the priorities converted to percentages (see
Figure 1.6).

While representatives of all the customer types will be included in the focus
group, type Married Couple with Young Children, the customer type of
greatest importance, has been selected by the team as the focal point for
the video storyboard showing the vehicle being used in a fashion typical of
the customer. This selection is reflected in Figure 1.6 as highlighted text.

22 CHAPTER 1

11 QFD could actually be used at this point to prioritize the customer types in terms of the newly
discovered business drivers. As the purpose of the example is to explain QFD, however, that would
only make things more confusing.

Figure 1.6 Prioritized customer types are entered into the QFD matrix as business drivers. Highlighting
shows highest priority type and focal point for the video storyboard.

Identify Use Cases

In “traditional” manufacturing-based QFD, after the customer needs are
identified (also called voice of the customer, or business drivers), the next
step is to identify what are variously called technical performance measures
or technical requirements. This latter term in particular does not mean
what it would in a software engineering context. Technical requirements in
QFD lingo are actually measures that can be made on a manufactured
product to judge how well it satisfies the customer needs. As Lou Cohen has
pointed out, for QFD applied to software, it is common for this measure-
ment phase to be skipped over, moving directly to the identification of fea-
tures and functions of the software; that is what we’ll do here.

AN INTRODUCTION TO QFD: DRIVING VISION VERTICALLY THROUGH THE PROJECT 23

The “F” in QFD stands for functions. The goal of QFD is to find the best set
of “F” that meets or deploys the goal “Q.” As we are dealing with use case-
driven development projects, the “F” will stand for use cases. In our Mega
Motors QFD workshop, the goal is to identify the set of use cases that can
best be used to meet our business drivers.

Brainstorm Use Cases to Meet Business Drivers

In this next step of the Mega Motors workshop, the team brainstorms a list
of use cases that reflect the use of the vehicle by the customer types that
have been identified (refer to Figure 1.6). Figure 1.7 shows where you are in
the overall QFD process at this point.

24 CHAPTER 1

��� ���� ���	�

���
�������

���
�������
����
���
����
�����	�

�������
��	�

������	����
���
����

������	����
�����	�
�������
��	�

���
����
�������

�
�����	�

������	����
�������

�
�����	�

����� ��
�����

�	��������

�
��
�
��
��

�
��
�
��
��

�
��
�
��
��

Figure 1.7 Your location on the QFD road map.

Because the business drivers of our Mega Motors example are couched in
terms of a customer profile that closely resembles actors in use case devel-
opment, the team is able to quickly develop a set of use cases that reflect
different uses of the vehicle. The team also selects the use cases to empha-
size different features and functions and to stress different components of
the vehicle. For example, the Drive through Mountains use case was
selected because mountain driving is notoriously difficult on the engine

going uphill, brakes going downhill, and relies heavily upon good steering
for hairpin turns; in all, a thorough use of three components in a manner
distinct from the other use cases.

The use cases identified by the team are:

• Carpool in Stop and Go Traffic

• Drive Long Road Trip

• Go Off-roading

• Take/Pick Up Kids at School

• Romantic Night on the Town

• Drive through Mountains

In the previous step of the workshop, you worked with the team to identify
Married Couple with Young Children as the focal point for the focus group
video storyboard. From this set of uses cases just identified, one will even-
tually be selected (in the next step) as the basis for the storyboard itself,
showing a married couple with children using a mockup of the Mega
Motors vehicle. In addition, the set of prioritized use cases as a whole will
be used to analyze and prioritize quality requirements and components (in
the step after next). These will be featured in the video.

Enter Use Cases into QFD Matrix

After the list of use cases is identified, the use cases are entered into the
QFD matrix (see Figure 1.8).

Keep in mind that the business drivers for a project will not always bear
such a resemblance to use case actors. Neither is it the case that the QFD
process always starts with business drivers. There may be occasions in
which the use cases come first, followed by the search for business drivers
with which to prioritize them.

AN INTRODUCTION TO QFD: DRIVING VISION VERTICALLY THROUGH THE PROJECT 25

Figure 1.8 Use cases to be analyzed and prioritized are entered into columns of matrix.

Analyze Relationship of Use Cases to Business
Drivers

To this point in the Mega Motors workshop, you have worked with the team
of engineers and marketing reps to identify a prioritized set of business
drivers and a set of use cases (not yet prioritized). In this next step of the
QFD workshop (see Figure 1.9), the team analyzes and prioritizes each use
case in terms of each business driver. This provides:

1. A prioritization of the use cases in terms of how well each lines up
with the business drivers

2. One use case singled out as the basis for the storyboard itself, which
will show a married couple with young children using a mockup of the
Mega Motors vehicle as per the use case that is selected

26 CHAPTER 1

There are generally two ways to proceed on analyzing use cases (columns)
in terms of business drivers (rows). One approach is to proceed by column,
analyzing one use case against all business drivers, then moving to the next
use case, and so on. This column-wise approach is advocated by Ronald
Day in Quality Function Deployment: Linking a Company to Its Customer,
stating that if the team works row-wise, they can often find a relationship
between almost any customer need (business driver) and technical
requirement (use case).

On the other hand, when the QFD matrix is being used to select the best
choice(s) from a set of alternatives, I’m inclined to argue that row-wise
works best, taking a business driver and analyzing it in terms of all the use
cases, then moving to the next business driver. Working row-wise lends
itself better to asking the question: Which of these use cases best meets a
given business driver? Because part of the goal of the workshop is to iden-
tify the best use case for a video storyboard, this is the strategy you decide
to use with the team.

AN INTRODUCTION TO QFD: DRIVING VISION VERTICALLY THROUGH THE PROJECT 27

��� ���� ���	�

���
�������

���
�������
����
���
����
�����	�

�������
��	�

������	����
���
����

������	����
�����	�
�������
��	�

���
����
�������

�
�����	�

������	����
�������

�
�����	�

����� ��
�����

�	��������

�
��
�
��
��

�
��
�
��
��

�
��
�
��
��

Figure 1.9 Your location on the QFD road map.

Which Use Cases Best “Deploy” Each Business Driver?

From this stage of the QFD workshop forward, you have arranged to have a
projector in the room, attached to a computer setup with the QFD matrix.

This provides a common display for the whole team to see and work from.
Working row-wise, you start with the first business driver, Young Single
Male (i.e., video storyboard must target this customer) and walk the team
through asking this question: Which of the following use cases is a young
single male most likely to be interested in?

• Carpool in Stop and Go Traffic

• Drive Long Road Trip

• Go Off-roading

• Take/Pick Up Kids at School

• Romantic Night on the Town

• Drive through Mountains

You instruct the team to rate interest using this scale common to QFD:

• 9 (nine)—Very Interested

• 3 (three)—Interested

• 1 (one)—A little interest

• 0 (blank)—Not enough interest to mention

To further aid the prioritization of the use cases and address the concern
expressed by Ronald Day about working row-wise, you instruct the team
that as a guideline, try not to assign more than two use cases a nine. (This
is just a suggestion, and is based on trying to identify that proverbial 20% of
the use cases that delivers 80% of the bang for the buck. Because there are
six use cases, 20% would be approximately one or two use cases that you
are restricting to receive a “9”.)12

28 CHAPTER 1

12 In Chapter 2, “Aligning Decision Making and Synchronizing Distributed Development
Horizontally in the Organization,” you’ll see an example where you probably would not want to
restrict the number of high scores (“9s”) on a row.

Figure 1.10 shows the QFD matrix after row one—Young Single Male—has
been completed.

AN INTRODUCTION TO QFD: DRIVING VISION VERTICALLY THROUGH THE PROJECT 29

Figure 1.10 Each use case is rated in terms of interest to Young Single Male. Assumptions, ideas, issues,
and questions are recorded as the analysis proceeds, shown here as comments made in cells
of the matrix.

A very important part of QFD is the discovery and brainstorming that
occurs while a team is thinking about the correlation of business drivers to
use cases. As a facilitator, you are prepared to capture ideas, issues,
assumptions, notes, and questions on a flip chart at the front of the room.
You also have the person working the QFD matrix record this information
as notes in the appropriate cells of the matrix (refer to Figure 1.10).

For example, as the team discusses the interest of young single males in the
use case Go Off-roading, there is discussion as to whether they are really
attracted to off-roading per se, or more to the looks of a vehicle that is
equipped for off-roading (i.e., big tires, high ground clearance, and so on).
This is an important insight the team feels worth capturing (a vehicle that
looks like an off-road vehicle is cheaper to build than one actually capable
of off-roading).

Another question, as the team discusses the possible interest of young
single males in use case Drive through Mountains, is what about the
mountains would draw the attention of a young single male? The answer:
skiing, camping, rock climbing, and so on. This information could well be
used in future elaboration of the use case for this particular customer type
if that becomes necessary; again, this is information the team felt worth
capturing. QFD is not only a powerful tool for prioritizing use cases, but
also for harnessing team brainstorming in a structured, systematic way.

As the team scores each use case in terms of the business driver (interest
in use case by young single male), the results are instantly calculated at
the bottom of the QFD matrix implemented as a spreadsheet. The row
Raw Score sums for each column are the products of business driver
priority times the score given to the use case (blank, 1, 3, or 9). The row
Relative Weight then calculates the relative percent for each use case’s raw
score. Excel formulas for use case Drive through Mountains are shown in
Figure 1.11.

30 CHAPTER 1

Figure 1.11 Excel formulas for calculating Raw Score and Relative Weight for each use case. Your favorite
spreadsheet will have similar functionality.

Results

After about an hour and a half, the team has completed a review of each use
case in terms of each business driver.13 Each use case has received a rating
of 0 (blank), 1, 3, or 9, indicating the strength of its relationship to the busi-
ness driver (the higher the number, the stronger the relationship). Just as
important as the score, however, are the team discussions that transpire;
this is team alignment to a common understanding of the problem taking
place. Some of the various ideas, assumptions, and notes recorded as part
of the discovery process are shown in Figure 1.12.

AN INTRODUCTION TO QFD: DRIVING VISION VERTICALLY THROUGH THE PROJECT 31

Figure 1.12 Relationship part of matrix completed showing strength of relationship between use cases and
business drivers (i.e. focus group customer types).

13 As a facilitator, you can estimate approximate times needed by calculating the number of cells
to be worked through (e.g., five business drivers times six use cases = 30 cells) then allowing some
amount of time per cell for the team discussion. Pick an amount of time per cell that allows dis-
cussion to occur but still gets the team through the entire matrix in a reasonable amount of time.

The final prioritization of use cases is summarized in Table 1.2, with use
case Take/Pick Up Kids at School being the highest ranking use case. This
use case is selected by the team as the basis for the focus group video sto-
ryboard in which a married couple with young children (the high-ranking
customer type) will be shown using a mockup of the Mega Motors vehicle
taking and picking up the kids at school. Customer type Married Couple
with Young Children and use case Take/Pick Up Kids at School are high-
lighted in the QFD matrix to indicate this (see Figure 1.12).

Table 1.2 Relative importance of each use case in terms of business drivers

Use Case Raw Score Relative Weight

Carpool in Stop and Go Traffic 3 13%

Drive Long Road Trip 4 18%

Go Off-roading 0.4 2%

Take/Pick Up Kids at School 7 33%

Romantic Night on the Town 4 19%

Drive through Mountains 3 14%

In addition to providing a basis for prioritizing use cases, analyzing the
relationship between business drivers and use cases can also help identify
missing use cases. If you have a business driver for which no use case
seems to correlate very well, you may well be missing a use case or use
cases; in QFD lingo, the customer need or business driver has no function
(use case) through which to be deployed.

Analyze Correlations Between Use Cases

The next and final step for this particular QFD matrix is to analyze the cor-
relation between the use cases (see Figure 1.13).

In “standard” QFD, this step is usually done with non-functional require-
ments or design goals that can sometimes work against one another. For
example, in software the design goal to build a component that is highly
portable from one platform to another may work against the design goal of
optimum speed. The code you have to write to be portable may not be the
same code you would write to take advantage of hardware acceleration

32 CHAPTER 1

tricks on a given, single platform. The idea is to apply this same concept to
use cases, looking for ones that the team anticipates are going to negative-
ly correlate, where aspects of the product required for one use case work
against aspects of the product required by another use case.

AN INTRODUCTION TO QFD: DRIVING VISION VERTICALLY THROUGH THE PROJECT 33

��� ���� ���	�

���
�������

���
�������
����
���
����
�����	�

�������
��	�

������	����
���
����

������	����
�����	�
�������
��	�

���
����
�������

�
�����	�

������	����
�������

�
�����	�

����� ��
�����

�	��������
�
��
�
��
��

�
��
�
��
��

�
��
�
��
��

Figure 1.13 Your location on the QFD road map.

In this step, you have the team fill in the top, correlation part of the QFD
matrix (see Figure 1.14).

The correlation part of the matrix is set up such that there is a cell for each
pair-wise combination of use cases. Figure 1.14 shows that the team has
identified a negative correlation (denoted with a minus sign) between use
case Go Off-roading and use case Drive Long Road Trip: they anticipate
that the characteristics of a vehicle designed for off-roading (tight suspen-
sion, short wheel base for going over bumps, knobby off-road tires) are
opposites of the design characteristics of a vehicle built for comfort on long
road trips. In the correlation part of the matrix, use cases that work against
one another are shown with a negative sign. Likewise, the team has identi-
fied a negative correlation between the use case Go Off-roading and the
use case Take/Pick Up Kids at School: a key design characteristic of a vehi-
cle built for off-road driving is high ground clearance. This is seen to
impede the activities of use case Take/Pick Up Kids at School, namely easy
loading and unloading of cargo and putting kids in, and taking kids out of,
a car seat.

Figure 1.14 The correlation part of the matrix—sometimes called the “roof” of the house of quality—is used
to make note of use cases that may work against one another.

First Matrix Complete; QFD Workshop Status
Check

The Mega Motors QFD workshop team has made good progress, so you
decide to review the results thus far:

• A set of business drivers has been identified in the form of a
customer profile (that is to say, types of customers that will be
attending the focus group).

• The customer types were prioritized using a variant of
Wideband Delphi. In addition to producing a prioritized set
of customer types, the process also helped bring to the sur-
face tacit assumptions and information held by individuals
for the group as a whole to see. Three additional underlying
business drivers were identified: market size, brand loyalty,
and disposable income of each customer type.

34 CHAPTER 1

• From the prioritized list of customer types, Married Couple
with Young Children scored highest and was identified as the
focus of the video storyboard.

• Use cases were identified that would be of interest to all the
customer types. The use cases were then prioritized by ana-
lyzing the relationship between each business driver and use
case, scoring that relationship with a scale of 0 (blank), 1, 3, or
9 (highest score).

• The high-ranking use case—Take/Pick Up Kids at School—
was then selected by the team to serve as the basis for the
storyboard’s storyline.

• Correlations between use cases were analyzed to identify neg-
ative correlations (i.e., use cases that might work against one
another). Use case Go Off-roading was identified as having a
negative correlation with use cases Take Long Road Trip and
Take/Pick Up Kids at School.

In the next step of the QFD workshop, the prioritized use cases will be used
to move the business drivers down into aspects of system design to analyze
quality requirements and vehicle components that should be featured in
the focus group video storyboard.

“Flipping the Matrix”: Deployment to Quality
Requirements

As noted earlier, QFD has received some attention in the use case commu-
nity as a means of prioritizing use cases. What has received less attention,
however, is the subsequent use of prioritized use cases as input to QFD to
prioritize other aspects of software development (e.g., alternate design
approaches). That is the goal of the Mega Motors QFD workshop team in
the next step.

Recall that the “D” in QFD stands for “Deployment.” In a previous work-
shop step, the team analyzed the relationship between business drivers
and use cases to identify the priorities over the use cases that would best
deploy the business drivers. In this next step, the business drivers will be

AN INTRODUCTION TO QFD: DRIVING VISION VERTICALLY THROUGH THE PROJECT 35

deployed deeper into design aspects of the product by use of the prioritized
list of use cases.

The prioritized use cases will be used to analyze quality requirements, such
as reliability, safety, and vehicle look and feel, to see which quality require-
ments best align with the prioritized use cases and, in turn, the business
drivers. The same will be done with components of the vehicle: engine,
transmission, body, and so on.

These results will then be used to finish the outline for a video storyboard
showcasing the high priority quality aspects of the high priority compo-
nents of the vehicle (e.g., reliability of the engine, safety of door locks, and
so on) while in use by the high priority customer type—married couple
with young children—taking and picking up their kids at school (the high-
priority use case).

In this step of the workshop (see Figure 1.15), the team will prioritize qual-
ity requirements for the Mega Motors vehicle in terms of the prioritized use
cases from the QFD matrix (columns of Figure 1.14). This involves building
a new QFD matrix in which the output of Figure 1.14 becomes the input of
the new matrix. This is sometimes called “flipping the matrix” because
columns of the first QFD matrix will now become the rows of the next
matrix (see Figure 1.16).

36 CHAPTER 1

��� ���� ���	�

���
�������

���
�������
����
���
����
�����	�

�������
��	�

������	����
���
����

������	����
�����	�
�������
��	�

���
����
�������

�
�����	�

������	����
�������

�
�����	�

����� ��
�����

�	��������

�
��
�
��
��

�
��
�
��
��

�
��
�
��
��

Figure 1.15 Your location on the QFD road map.

Figure 1.16 The matrix for analyzing and prioritizing quality requirements takes as its input the output
from the matrix shown in Figure 1.14.

Resolve Negative Correlation Between Use Cases

One issue that must be addressed at this point is what to do about the
results of the analysis of use case correlations (see Figure 1.14): use case Go
Off-roading was identified as having a negative correlation with use cases
Take Long Road Trip and Take/Pick Up Kids at School. Such negative cor-
relation can sometimes be an opportunity for new radical product design
as a team brainstorms for innovative ways to turn what appears to be a neg-
ative into a positive.

AN INTRODUCTION TO QFD: DRIVING VISION VERTICALLY THROUGH THE PROJECT 37

For example, thinking outside the box a bit, a team might decide to build a
vehicle with adjustable suspension allowing for high ground clearance for
off-roading, low ground clearance for easy passenger and cargo loading
and unloading, and adjustable stiffness for a soft, smooth ride on long road
trips and tight, controlled ride on the trail. Voilà! Markets that were once
separated—the off-roaders and the luxury/family/road-trippers—are now
united! And in fact, that is just what Land Rover did in 1993 with their
Electronic Air Suspension (EAS) system, dubbed the “magic carpet ride,”
combining the luxury car market with the off-road market.

In the case of the Mega Motors team, however, because the Go Off-roading
use case ranked so low in relative weight, the decision of the team is to drop
that use case as a driver in the project. In the flipped-matrix of Figure 1.16,
this is accomplished by zeroing out the raw score in the new matrix. This
effectively cancels out this use case as a factor in subsequent analysis based
on prioritized use cases. This identifies another strength of QFD: it is fairly
easy to do what-if analysis to explore the consequence of different priori-
ties at the business driver or use case levels.

Brainstorm List of Quality Requirements

To brainstorm, the team begins by compiling a list of quality requirements
in which the identified customer types are typically interested. Between a
common set of requirements used on most Mega Motors vehicles and
review of ideas and notes collected thus far in the workshop (e.g., those in
Figure 1.12), the team is able to quickly identify a half dozen quality
requirements:

• Reliability

• Good Looks

• Safety

• Fuel Economy

• Sporty Power and Steering

• Seating and Cargo Capacity

38 CHAPTER 1

The quality requirements are entered into the new QFD matrix as columns,
as shown in Figure 1.17.

AN INTRODUCTION TO QFD: DRIVING VISION VERTICALLY THROUGH THE PROJECT 39

Figure 1.17 Quality requirements to be analyzed and prioritized are entered as columns in the matrix.

Which Quality Requirements Are Most Important for
Each Use Case?

Next, you work with the team to analyze and prioritize each quality require-
ment (columns) in terms of each use case (rows). The goal is to identify a
few key quality requirements that are most important to the prioritized use

cases. You instruct the team to rate the quality requirements in terms of
their importance to each use case:

• 9 (nine)—Very important to the use case

• 3 (three)—Important to the use case

• 1 (one)—Somewhat important to the use case

• 0 (blank)—Has little or no importance to the use case

As before, you have the team work row-wise. For each use case they will
review each quality requirement, and then move to the next use case. You
instruct them that as a guideline they should try not to allocate more than
two 9s per use case; this forces the team to think in terms of what is the
biggest bang for the buck in quality requirements per use case.

The results of the team’s efforts are shown in Figure 1.18. In addition to
scoring each quality requirement in terms of importance to the use cases,
the team also makes notes on assumptions upon which the scoring was
based: ideas, questions, and so on. These are entered on the flip chart at the
front of the room and into the appropriate cells of the QFD matrix, which
is being projected on the screen at the front of the room.

The scoring of quality requirements in terms of use cases has identified
Reliability and Seating and Cargo Capacity as the two high scoring use
cases; this is indicated by the highlighting in Figure 1.18.

40 CHAPTER 1

Figure 1.18 Completed matrix showing importance of quality requirements to use cases. The two high-
scoring quality requirements, Reliability and Seating and Cargo Capacity, are highlighted.

Analyze Correlations Between Quality Requirements

The final step of analysis on this matrix is to have the team analyze the
quality requirements in terms of how they correlate with one another, iden-
tifying ones that work positively in support of one another and ones that
work against one another negatively. The quality requirements are entered
in the correlation part of the matrix—the “roof” of the matrix—then ana-
lyzed pair-wise. The results of the team’s analysis of the correlation of qual-
ity requirements are shown in Figure 1.19. To summarize, Reliability and
Safety were found to be positively correlated: a vehicle that was unreliable
was likely to also be unsafe. Given that safety was highly ranked as a quali-
ty requirement to start with, marketing felt it might be worthwhile to pur-
sue reliability and safety in tandem as part of the video storyboard. This
addition of Safety to the list of quality requirements to focus on in the video
storyboard is indicated by highlighting in the matrix (see Figure 1.19).

AN INTRODUCTION TO QFD: DRIVING VISION VERTICALLY THROUGH THE PROJECT 41

Quality requirement Fuel Economy was found to be negatively correlated
with Sporty Power and Steering (the more power, the more gas it burns),
and also with Seating and Cargo Capacity (the more carrying capacity, the
bigger the vehicle, the more gas it burns). Even though Fuel Economy was
not rated very important to the use cases, the team decided it was wise to
make note to be alert for potential drops in the fuel efficiency of the vehi-
cle that might result from increases in seating and/or cargo capacity (a
high-ranking quality requirement). This is a typical use of the correlation
information in QFD: while you may decide that a given quality requirement
is not to be the focus of a new release, you also don’t want it to regress in
response to some other change. In software, performance is a quality
requirement that often suffers this fate.

42 CHAPTER 1

Figure 1.19 Reliability and Safety were found to be positively correlated. Fuel Economy was found to be
negatively correlated with both Sporty Power & Steering and Seating & Cargo Capacity.

Flipping the Matrix: Deployment to Vehicle
Components

One last QFD matrix is needed to complete the analysis of the Mega Motors
team. In this final QFD step (see Figure 1.20) the prioritized use cases are
used to analyze components of the vehicle—engine, transmission, body,
and so on—to determine which best align with the prioritized use cases
and, in turn, the business drivers.

AN INTRODUCTION TO QFD: DRIVING VISION VERTICALLY THROUGH THE PROJECT 43

��� ���� ���	�

���
�������

���
�������
����
���
����
�����	�

�������
��	�

������	����
���
����

������	����
�����	�
�������
��	�

�������

�
�����	�

������	����
�������

�
�����	�

����� ��
�����

�	��������

�
��
�
��
��

�
��
�
��
��

�
��
�
��
��

Figure 1.20 Your location on the QFD road map.

Working with the team, you work through the same process as in the previ-
ous section, “Flipping the Matrix: Deployment to Quality Requirements,”
but rather than addressing quality requirements, it is done for the follow-
ing components of the Mega Motors vehicle:

• Brakes

• Steering

• Engine

• Transmission

• Body

• Interior

• Suspension

The results of this step are shown in Figure 1.21; the team did not feel it
necessary to do analysis of the correlation of components, so there is no
“roof” to the matrix.

44 CHAPTER 1

Figure 1.21 Matrix showing relationship of vehicle components with use cases.

To summarize the results of this last step, components Body and Interior
were identified by the Mega Motors team as having the greatest correlation
to the prioritized use cases. They are shown highlighted in Figure 1.21 to
indicate that they will be the featured components of the video storyboard.

Workshop Conclusion and Summary

With the completion of the third and final QFD matrix, the team is ready to
wrap-up its findings (see Figure 1.22).

To review, the objective statement of the workshop was to:

Determine what key features of the Mega Motors vehicle will be
most attractive to the customer, along with a key use case that will
be used as the basis for a video-based storyboard shot with a
mockup to advertise these key features being used in typical fash-
ion by a typical customer.

AN INTRODUCTION TO QFD: DRIVING VISION VERTICALLY THROUGH THE PROJECT 45

��� ���� ���	�

���
�������

���
�������
����
���
����
�����	�

�������
��	�

������	����
���
����

������	����
�����	�
�������
��	�

���
����
�������

�
�����	�

������	����
�������

�
�����	�

����� ��
�����

�	��������

�
��
�
��
��

�
��
�
��
��

�
��
�
��
��

Figure 1.22 Your location on the QFD road map.

From the workshop, the following has been identified as the basis for the
focus group video storyboard:

The video will follow a married couple with young children as
they drive the new Mega Motors vehicle to take and pick up their
children from school. Featured in the video will be the vehicle’s
interior and body, focusing on safety, reliability, and ample seat-
ing and cargo capacity.

One good thing about QFD is its support of traceability. When results are
presented after the workshop to the VP of Engineering and Marketing, it
will be possible to explain the trail of thought leading to the recommenda-
tion. QFD also allows the VPs to do follow-up what-if analysis on alternate
business driver priorities, exploring other possible outcomes, if they
choose to do so.

Finally, while this workshop has successfully identified the overall focus of
the video storyboard, a further QFD workshop is probably needed to drill
down into more detail,14 this time extending participants to include some-
one from the team that will actually produce the video. The goal of that
workshop will be to:

• Use QFD to identify and prioritize specific parts of the interi-
or and body that play key roles in the scenarios that make up
the Take/Drop Kids at School use case.

• Select the highest priority parts from the prioritized list to
brainstorm and prioritize design ideas to make them reliable,
safe, and facilitate expanded seating and cargo capacity.

A QFD road map for such a follow-up workshop is given in Figure 1.23.

To close the workshop, you review assigned action items and then conduct
a brief “postmortem,” looking for things participants thought worked well
in this workshop and should be repeated in subsequent workshops and for
things that could be done better next time. That task completed, the work-
shop comes to a close.

46 CHAPTER 1

14 This two-phase approach is a common, practical application of QFD in which a quick pass is
made over a product at a coarse level of granularity to identify the product hot spots, here the key
components of the vehicle most critical to Take/Pick Up Kids at School use case. A second pass is
subsequently made drilling-down into more detail on just those critical components. See Cohen
(1995).

AN INTRODUCTION TO QFD: DRIVING VISION VERTICALLY THROUGH THE PROJECT 47

���� ���

���������

	
������	 ��

����������	

��� �

������
	�

�	�

�	� ��	�	

�������
�� ����	

������
� ���� ���

�������� �� ����
��

����������� ����	

�
����� ���
�������	�

� �����������

� �����

� ������ ��� �����

����
���

!����	���� ��	���

����	 �� ���� ����	

��������" 	���" ���

���� ��
�������

�#������ 	������

���
����
���
���

$�� ��	��� ����	

��� �����

�
��
�
��

�

�
��
�
��

�

Figure 1.23 QFD roadmap for subsequent workshop to drill down deeper in identifying design ideas for
specific parts of body and interior to make them reliable, safe, and facilitate increased seating
and cargo capacity.

Chapter Review

Let’s review what we’ve discussed about QFD in this chapter:

• QFD is a product-planning tool that is used to translate busi-
ness drivers (such as market size, brand loyalty, and dispos-
able income of a customer segment) into the technical
requirements of a product (such as seating & cargo capacity
of vehicle interior).

• Although QFD can certainly be used as a tool by an individ-
ual, its biggest value is as a tool used by a team. A team that
works through product planning with QFD will emerge with a
common vision of business drivers, priorities, assumptions
and issues and questions to be resolved.

• While the application of QFD to manufacturing is fairly stan-
dardized, no such standard exists for its application to use
case-driven development. The general approach described in
this chapter is to use QFD to transition from what the busi-
ness requires, to what the user requires (stated with use
cases), to what is required of the system. This transition is
based on Wiegers’ levels of requirement types.

• The use case community has given some attention to QFD as
a tool for prioritizing use cases. But prioritized use cases can
in turn also provide a means of prioritizing other aspects of
software development (e.g., alternate product designs).

• A useful way to think of QFD is as method of prototyping a
project, allowing a team to run through a complete product
development cycle quickly, from start (thinking about the
business) to end (thinking about the final product that results
from the business drivers). What-if analysis with QFD allows
a team to explore the consequence of different priorities at
the business driver or use case levels.

48 CHAPTER 1

In the previous chapter, we looked at the combined use of QFD and use
cases to link business drivers to user requirements, and user requirements
to system requirements and design decisions: the vertical dimension of
requirements management. In this chapter, we turn to the second dimen-
sion of requirements management: using QFD and use cases to align deci-
sions and synchronize use case-driven development horizontally across
multiple component, product, or business groups in a company (i.e., use
case-driven distributed development).

Two examples will be used in this chapter, both centered on a hypothetical
company, Oil & Gas Exploration Systems. The examples first utilize QFD to
analyze Oil & Gas Exploration Systems’ needs for a company-wide develop-
er’s kit for shared earth modeling (we’ll get to this in the section titled, “The
Problem: Selecting a Shared Earth Modeling Development Kit”) and then to
synchronize use case-driven development across the company as their
product line is migrated over to the new developer’s kit. While Oil & Gas
Exploration Systems is a hypothetical company, the examples are based on
actual experiences and illustrate real product development issues faced by
software development companies in the industry.

49

2
Aligning Decision Making and

Synchronizing Distributed
Development Horizontally in

the Organization

Using QFD to Align Decision Making
Horizontally Across a Company

We begin this chapter by looking at an example of QFD applied to cross-
company decision making. This example is based on an actual program1 in
which I helped get the team going in its use of QFD, but the real work was
done by a sharp team of geoscientists and developers and coordinated
largely by a colleague.2 This example has been simplified and tweaked a bit
to better convey the QFD process; results of analysis and decisions reached
are kept somewhat vague to protect proprietary information.

A Brief Overview of Oil and Gas Exploration

Searching for oil, an activity that started in the 1850s as a hit or miss, by the
seat-of-the-pants outing, has today grown into a big industry that employs
big science. Big geoscience and computer science, to be specific. At the risk
of oversimplifying, the search for oil and gas today can be said to involve
building elaborate computer models of the surface and sub-surface of the
area where you think oil exists, then drilling exploratory wells where the
models indicate the greatest probability for oil that can be recovered in a
profitable fashion.

A number of different disciplines have evolved through the years for
searching for oil, each with its own use cases (“workflows” in geoscience
lingo) and approach to modeling the earth. Three key disciplines used in oil
and gas exploration are geology, geophysics, and petrophysics. Each pro-
vides a piece of a large puzzle that must be assembled in order to deter-
mine what may lie beneath the surface of the earth. Let’s look briefly at
these three disciplines.

50 CHAPTER 2

1 I learned many years ago that developing examples for training material is a “damned if you do,
damned if you don’t” situation. If you use a “toy problem,” you may err with a problem that is so
easy that it doesn’t illustrate the application of a technique to “real life” situations. And if you use
a “real life” example, you may err with a problem domain that distracts teaching the technique.
While this is a “real life” example of the use of QFD, keep in mind that an understanding of the geo-
science is not necessary nor the issue. The essential point to focus on is the mechanics of QFD for
deciding between alternatives, which could well have been labeled Alternative-1, Alternative-2,
Alternative-3, and so on, but then I would have erred with an example that wasn’t very interesting!
2 Thanks to Dale Davis for a great example of QFD in action in the oil and gas industry.

Geology, the oldest of the geoscience disciplines, utilizes models built on
what we know about the earth’s strata, or distinctive layers of rock, such as
the Permian, Triassic, Jurassic, Cretaceous, and Tertiary. The goal with these
models is to find a convergence of the geologic elements we know from
empirical observation are needed to form and trap oil and gas.

Geophysics, on the other hand, is a more recent discipline, being applied to
oil exploration for the first time in the early 1920s. Geophysics utilizes mod-
els based on seismic data of the earth obtained by “thumping” the earth
and listening for the return of sound energy reflected off the earth’s subsur-
face structures—rocks, salt domes—to produce an image of the earth’s
subsurface.

Petrophysics builds models of the earth based on direct measurement of
the subsurface made from the boreholes of wells drilled into the earth, a
process called well-logging. Well-logging got its start in 1912 when a
Frenchman, Conrad Schlumberger, hit upon the idea of lowering tools into
a borehole to make electrical measurements of the subsurface rocks. Today,
a variety of measurements such as electrical resistivity, nuclear properties
and sonic travel times provide empirical evidence of the makeup of the
earth’s subsurface where a well has been drilled.

In our next example, we look at a hypothetical company—Oil & Gas
Exploration Systems (O&G for short)—that builds software systems that oil
companies buy or lease for earth modeling as part of their exploration for
oil and gas. In the example, O&G turns to QFD to plan the next big evolu-
tion in their product line: a multi-disciplinary approach to oil and gas
exploration.

The Problem: Selecting A Shared Earth Modeling
Development Kit

O&G has different products, made of a variety of components, for each
of the disciplines—geology, geophysics, and petrophysics. For a variety of
reasons, the product lines developed independently as part of separate
business divisions. As the need to improve the efficiency of oil and gas
exploration grows, O&G (and the industry in general) has come to recognize
the importance of integrating these products and their respective disci-
plines so that information is quickly and easily shared between them in near
real-time, a concept that in the industry is called shared earth modeling.

ALIGNING DECISION MAKING AND SYNCHRONIZING DISTRIBUTED DEVELOPMENT HORIZONTALLY IN THE ORGANIZATION 51

In order to accomplish this level of integration in its product suite, O&G has
decided to invest in the development of a developer’s toolkit—or dev kit—
for earth modeling that can be shared company-wide across all compo-
nents of its product suite. Rather than starting from scratch, O&G will use
the source from an existing dev kit as a starting place and then customize
and extend it as needed to support the breadth of the O&G product suite.

O&G has decided to use QFD to analyze their needs for such a dev kit, then
select from among a variety of candidate dev kits available internally (e.g.,
as part of existing products and research efforts) and externally from vari-
ous consortia.

O&G’s QFD Road Map

Figure 2.1 shows the QFD road map that O&G plans to use to analyze their
needs for a dev kit; let’s walk through the process quickly. The QFD process
uses four QFD matrices:

1. In the first step, Matrix 1, the business drivers for selecting a dev kit
are used to prioritize the collective set of use cases from each of the
three products of the three disciplines: geological use cases, geophys-
ical use cases, and petrophysical use cases.

2. In step two, Matrix 2, the prioritized use cases are used to prioritize
non-functional requirements for the dev kit.

3. In the third step, Matrix 3, the prioritized use cases combined with the
prioritized non-functional requirements of step two are used to iden-
tify various modeling techniques that best support O&G’s needs for a
dev kit.

4. In the final step, Matrix 4, the prioritized set of modeling techniques
is used to prioritize the candidate dev kits from which a winner will be
selected.

52 CHAPTER 2

Figure 2.1 O&G’s QFD road map for selecting a shared earth modeling dev kit.

Working from Figure 2.1, let’s walk through the QFD process in more detail.
O&G will use a workshop much like the one described in the previous Mega
Motors example, but details of the workshop itself will not be elaborated
upon. Also, actual results of each of the four matrices of Figure 2.1 are not
provided but are described in terms of their general inputs, analysis done
on them by the O&G team, and their outputs. This is done in part to protect
proprietary results of the actual program this example is based upon. This
also helps you focus on the main point of the example, the mechanics of
QFD as a decision-making tool, by avoiding overly detailed examples from
geoscience and earth modeling (a domain many readers may not be famil-
iar with).

No two applications of QFD are likely to be quite the same, so differences
in the Mega Motors and O&G example will be highlighted to illustrate just
some of the variations that can occur.

ALIGNING DECISION MAKING AND SYNCHRONIZING DISTRIBUTED DEVELOPMENT HORIZONTALLY IN THE ORGANIZATION 53

���

�������

��� 	
���

��
���
����

�

���������
��

��� 	
���

���

	
���

��
���
����

�

���������
��

������
�

����
�����

������
�

��� ����

������
�

����
�����

��������
�

���������
�

�����������
�

�����������

��� 	
���

�����������

������
� ����
�����

����������� ��
���
����

�

���������
��

�����������

������
� ���� ���

�
��
�
��
�� �

��
�
��
��

�
��
�
��
��

�
��
�
��
��

�
�

�

�

!�������

��� ���

Matrix 1: Prioritize Use Cases

The O&G QFD team has been selected to include geoscientists and devel-
opers from each of the disciplines that the dev kit must support: geology,
geophysics, and petrophysics. The QFD process begins with Matrix 1.

Identify Use Cases

Whereas the Mega Motors QFD process began with the team thinking
about business drivers, the O&G team begins by thinking about the essen-
tial use cases that must be supported by an earth modeling dev kit. Use
cases come naturally to geoscientists because the process of oil and gas
exploration has traditionally been described in terms of what they call
workflows, which are essentially the steps in a use case.

The use case of Appendix A, “Sample Use Case,” named Create 2D Cross-
Section, is an example of the type of use case the O&G team identifies, and
it illustrates the combined use of three disciplines—geology, geophysics,
and petrophysics—for oil and gas exploration. (Understanding this use
case is not essential to this QFD example and is provided solely for infor-
mational purposes.)

After the O&G QFD team has identified all the essential use cases for all the
products, they are entered as columns of Matrix 1 (refer to Figure 2.1).

Identify Business Drivers to Prioritize Use Cases

Next, the team turns its attention to what criteria form a basis for prioritiz-
ing their use cases. As already noted, this is different from the Mega Motors
example where the team started with the business drivers. While this may
be out of the norm from a “standard” manufacturing QFD perspective, it
reflects the real-life diversity you are likely to experience in using QFD.
Used in this fashion—use cases first, business drivers second—the ques-
tion that the team asks themselves is: What is it that makes one use case
more important than another in terms of this project (i.e., selection of a
shared earth modeling dev kit)? In doing this, the team works backwards to
an agreement on what the business drivers for the project are. Either way—
working forward as in the Mega Motors example, or backwards as the O&G
team is doing—the end result is the same: team alignment.

54 CHAPTER 2

The O&G team uses pros and cons analysis of the use cases to help under-
stand as a group what criteria makes one use case more important than
another and arrives at the business drivers shown in Table 2.1. These are
entered as rows in Matrix 1 (refer to Figure 2.1).

Table 2.1 O&G’s Business Drivers for Prioritizing Use Cases of Matrix 1 Figure 2.1

Business Driver Description Priority

Benefit Derived The benefit derived by having a use case’s results readily 75%
available to other geoscience disciplines via a shared
earth model. Use cases ranked on a scale of

9—Highly beneficial to most or all other disciplines

3—Highly beneficial to a few other disciplines

1—Somewhat beneficial to a few other disciplines

0 (blank)—Little or no benefit to the other disciplines

Frequency of Use Based on product’s operational profile3, use cases are divided 25%
into three broad categories and ranked on a scale of

9—High frequency of use

3—Medium frequency of use

1—Low frequency of use

Analyze Relationship of Business Drivers to Use Cases

Given a prioritized set of business drivers and essential use cases for each
of the three O&G disciplines, the QFD team scores each use case in terms
of the business drivers, resulting in a set of prioritized use cases (refer to
bottom of Matrix 1 in Figure 2.1).

There is a subtle difference between this process for the O&G team and that
used by the Mega Motors team. Recall that the Mega Motors team was
asked to identify the use cases that best met a given business driver by
restricting the number of high scores (i.e., a 9) they allocated on a row.
While the Mega Motors team was trying to find the best use case for a video
storyboard, the O&G team is trying to factually record the relationship

ALIGNING DECISION MAKING AND SYNCHRONIZING DISTRIBUTED DEVELOPMENT HORIZONTALLY IN THE ORGANIZATION 55

3 Details of describing an operational profile for a suite of use cases are covered in Part 2, “Software
Reliability Engineering.”

between business drivers and use cases. So for a given business driver, such
as Benefit Derived (refer to Table 2.1), it could in principle be that every use
case does indeed deserve a high score for this business driver (i.e., a 9).

Here’s a heuristic you can use to try to tell if you should restrict the number
of high scores on a row when working row-wise: Are you trying to find the
best choice(s) on the row, or are you trying to weed out the ones that don’t
apply? If you are trying to find the best choice—say, the best use case—
from among a number of candidates, restrict use of high scores to force the
team to make the difficult decision of identifying the best of the best. If,
however, you are trying to simply weed out the ones that don’t apply, in
principle all could very well receive high scores. How do you know which
you are trying to do: find the best or weed out the non-applicable? That just
depends on the problem at hand, and answering that question is part of the
team alignment that takes place as part of the QFD process.

With the completion of Matrix 1, the O&G QFD team moves on to Matrix 2
(refer to Figure 2.1).

Matrix 2: Prioritize Non-Functional Requirements

Next, the team turns its attention to the quality requirements or, as we’ll
call them here, the non-functional requirements, of the dev kit. They begin
with a new matrix—Matrix 2—and populate the rows with the prioritized
use cases from Matrix 1.

Identify Non-Functional Requirements

The Mega Motors team had a standard set of non-functional requirements
they used for the automotive industry (e.g., reliability, safety, and so on).
The O&G team decides to take a little more analytical approach and
reviews each use case by asking, What non-functional requirements are
pertinent to this use case? And, in fact, non-functional requirements are
fairly standard attire for what Alistair Cockburn calls the fully dressed use
case (Cockburn 2000), so the team is accustomed to this as part of their
normal use case-driven development. The difference now, however, is that
the non-functional requirements will be prioritized with respect to the suite
of use cases as a whole. This is an example of the value added by QFD to use
case development.

56 CHAPTER 2

Following is a sample of some of the non-functional requirements identi-
fied by the O&G team as being pertinent to their use cases:

• Construction speed (faster is better): Given a model of a
specified spatial resolution, time required to build the model
from its constituent elements (e.g., horizons and fault
surfaces).

• Display speed (faster is better): Speed at which the model
can be drawn in 3D.

• Query speed (faster is better): The user selects a point on or
in the model and makes a query: speed at which associated
data structures return the values for this query.

• Memory size (smaller is better): Amount of memory required
to store a model of a particular spatial resolution.

Notice that the O&G team is careful to specify for each non-functional
requirement the desired “direction” (e.g., for something like speed, faster is
better). This is, in fact, standard practice in QFD and is just one more step
in making sure that a team is aligned in their thinking.

To complete this step, the non-functional requirements identified by the
team are placed in the columns of Matrix 2 (refer to Figure 2.1).

Analyze the Relationship of Use Cases to
Non-Functional Requirements

As just noted, while non-functional requirements are a part of the fully
dressed use case, QFD adds an additional bit to this relationship by helping
identify non-functional requirements that are highest priority to a suite of
use cases as a whole.

Given a prioritized set of use cases (rows) and non-functional requirements
(columns), the QFD team scores each non-functional requirement in terms
of its importance to each use case. The result: a prioritized set of non-func-
tional requirements (refer to the bottom of Matrix 2 in Figure 2.1).

ALIGNING DECISION MAKING AND SYNCHRONIZING DISTRIBUTED DEVELOPMENT HORIZONTALLY IN THE ORGANIZATION 57

With Matrix 2 complete, the O&G QFD team moves to Matrix 3 (refer to
Figure 2.1).

Matrix 3: Prioritize Earth Modeling Techniques

The team has arrived at what is, in some sense, the heart of the decision
about which shared earth modeling dev kit they will use: the prioritization
of modeling techniques in terms of use cases and non-functional require-
ments. In techniques for modeling, simulating, and analyzing the earth is
where Big Geoscience meets up with Big Computer Science, combining
mathematics, physics, the geosciences, computer aided design (CAD),
computer simulation, and decision analysis.

Again, the team begins with a new matrix—Matrix 3—and populates the
rows with both the prioritized use cases of Matrix 1 and prioritized non-
functional requirements of Matrix 2.

Identify Modeling Techniques

From their knowledge of the modeling techniques used in O&G’s own
product suite, plus those known to be supported in competitor’s products
and those supported in open source dev kits, the team puts together a set
of modeling techniques they believe should be considered as a basis for
shared earth modeling.

Here are a few examples the team feels are important to consider:4

• XYZ Orthogonal: This simple approach to earth modeling
involves dividing space into orthogonal cells by equally
spaced orthogonal planes in the three coordinate directions.

• XY Orthogonal: In this approach to earth modeling, each sur-
face (e.g., horizons, faults, and so on) is defined as an XY-
orthogonal grid. Each surface is single-valued (i.e., each XY
point has a single value).

58 CHAPTER 2

4 These are provided solely to give you an idea of the design decisions that are being made at this
point. A detailed understanding of each modeling technique is not needed.

• Triangular/Tetrahedral: An approach common in computer
aided design (CAD); surfaces are modeled as triangular grids.
Volumes (e.g., of a sub-surface salt dome) are modeled as
tetrahedra,5 congruent to the bounding triangles.

Now that the team has identified the list of modeling techniques for
consideration, they are entered into the columns of Matrix 3 (refer to
Figure 2.1).

Analyze Relationship of Use Cases and Non-Functional
Requirements to Modeling Techniques

Given a prioritized set of use cases and non-functional requirements, the
QFD team scores each modeling technique in terms of how well it supports
each use case and how well it meets each non-functional requirement. The
result is a prioritized set of modeling techniques (refer to the bottom of
Matrix 3 in Figure 2.1).

Matrix 4: Prioritize Shared Earth Modeling Dev Kits

The O&G QFD process concludes with a final matrix, Matrix 4 (refer to
Figure 2.1). The team populates the rows of Matrix 4 with the prioritized
modeling techniques from Matrix 3. The list of candidate dev kits being
considered by O&G are then put in the columns of Matrix 4. These candi-
dates include dev kits available internally as part of existing products and
research efforts and externally, such as gOcad (Geo Computer Aided
Design), a dev kit developed and maintained by a consortium of companies
and universities sponsoring research in 3D earth modeling.6

The QFD team then scores each dev kit in terms of how well it supports
each modeling technique. The final result of the O&G QFD process is a pri-
oritized set of dev kits (refer to the bottom of Matrix 4 in Figure 2.1).

ALIGNING DECISION MAKING AND SYNCHRONIZING DISTRIBUTED DEVELOPMENT HORIZONTALLY IN THE ORGANIZATION 59

5 A tetrahedron (singular) is a pyramid with three sides, resulting in four faces counting the bot-
tom. “Tetrahedra” is plural. Tetrahedral means having the form of a tetrahedron.
6 To learn more about shared earth modeling, visit the gOcad research consortium Web site at
http://www.gocad.org or the consortium’s spin-off company that maintains the gOcad developer’s
kit at http://www.earthdecision.com.

http://www.gocad.org
http://www.earthdecision.com

Example Conclusion and Summary

With the completion of Matrix 4 in Figure 2.1, the O&G QFD process is
complete. The process has produced not only a prioritized set of dev kits
but also a list of questions that need to be answered and assumptions that
must be validated. When addressed, however, the team will be ready to
make a recommendation on the winning dev kit as the future basis for
shared earth modeling for the O&G product suite.

As in the case of Mega Motors, after the O&G QFD team makes its final rec-
ommendation it will be possible to explain the train of thought leading to
the recommendation, and additional what-if analysis can be performed by
examining alternate priorities on use cases, non-functional requirements,
modeling techniques, and so on.

The O&G example is not only an example of how QFD can be used to align
decision making horizontally across a company, it also reiterates the theme
from the previous chapter of QFD as a means of driving vision vertically
through a project or, in this case, a cross-company program. Starting with
use cases and business drivers used to prioritize them, the O&G team has
used QFD to translate them into decisions about which modeling tech-
niques work best for the company and eventually into the selection of a dev
kit for shared earth modeling.

In Chapter 1, the point was made that although QFD is a tool that can cer-
tainly be used by an individual, its real value is as an approach for team
product planning, prioritization, and decision making. It is a way to get a
team “on the same page” and with the same vision of where a product
needs to go. The O&G example you’ve just seen demonstrates this idea
when the “team” is a company.

In fact, the bigger the team, the greater the leverage afforded by QFD. In the
actual case study which the O&G example represents, participants noted as
part of a review of the overall process that a primary value of having used
QFD was that the elements of the decision making process were made very
explicit and communication enhanced among the cross-company players.
In the politically charged atmosphere of a company, those two things alone
may be enough to justify QFD!

60 CHAPTER 2

Using QFD to Synchronize Distributed
Development Horizontally Across Component
Teams

In our previous example, Oil & Gas Exploration Systems (O&G) used a com-
bination of QFD and use cases to help align cross-company decision mak-
ing about their requirements for a shared earth modeling developer’s kit
(dev kit). In this, our final example, O&G has completed selection of a dev
kit and completed necessary customizations and extensions to support the
breadth of the O&G product suite. Now O&G looks to the task of planning
the port of products over to the use of the new dev kit.

Again, O&G will use a combination of use cases and QFD, this time to coor-
dinate the development. This decision is motivated by problems O&G has
experienced in the past working with distributed development (i.e., devel-
opment that requires the coordination between a large number of compo-
nent teams spread across its three business divisions: geology, geophysics,
and petrophysics). This problem is further compounded by geographical
separation of the teams in four cities spread across two countries.7 One
problem that can arise in such development is making sure that the vision
is clear as to what needs to be worked on by each team and in what order
(i.e., how to synchronize the work that is to be done). The problem is best
illustrated by looking at the solution.

Entropy Happens in Distributed Software
Development

Figure 2.2 shows a matrix similar in concept to that described by Schneider
and Winters: rows of the matrix are prioritized use cases, and columns
component teams (the use case of Appendix A is the first row of this
matrix).8 An “X” in a cell indicates that the corresponding component team
has work to do in implementing the corresponding use case. One way to

ALIGNING DECISION MAKING AND SYNCHRONIZING DISTRIBUTED DEVELOPMENT HORIZONTALLY IN THE ORGANIZATION 61

7 This is a problem many large software development companies in the oil and gas industry face.
Reality is often stranger than fiction.
8 See Schneider and Winters (1998), the section “Use Cases Versus Architectural View.”

construct such a matrix is to draw a sequence diagram for each use case
with components as columns in the sequence diagram. All components
that play in the sequence diagram receive an “X” in the matrix.

This matrix is a great way to do a summary rollup of a collection of
sequence diagrams. Scanning the matrix horizontally you can quickly see
all the components that play in a use case, and scanning vertically you can
see all the use cases in which a component plays. A matrix like this is a valu-
able tool for communicating to component or product teams how their
“piece” fits into the larger picture.

62 CHAPTER 2

��� �����

��������	
����

�
�

�
�

	�

������ �� �����	
�����

��
��� ��������� �����

����� ���� �������� ���� ������

��
������ ���	���������

����
������ ����

��
������ ����� ������� �����

!
������� ���� �����	"����� #���$�

%������� ���	
���������

��
��� ���� ��� ����

&���� ����'��� �����

�������������� %��������

��
��� ��� �����(����

����� #���$�
��� ����

"��� ����'��� �
)�

!
������� ���� ������
�� "������

������ #���$�
� �
)� "�����

��
 ���������
��������

��
��� ��������� ����

**+

,+

,+

-+

-+

-+

.+

.+

/+

/+

0+

0+

0+

)+

)+

)+

�+

*+

&
�
�
�
�
�
�
�
�

�

�
�
��

�
�

�
�
�
�
�

�

�
�
�
��
�
��

!

��
��
��
��
��
�

�
�
��
�
�
�

�
��
�
�
!

��
��
��
��
��
�

�
�
�
�
��
�
��

��

�
��
��
�

�
��
�
��

�
�

!

��
��
��
��
��
�

�
��
�
��

)
�

!

��
��
��
��
��
�

�
��
�
��

�
�
��

�
�

�
�
�
�
�

�

�
��
�
��

�
��
�
�
�
�
�

�

��
��
�
��
�
�
�1

�
�
�
��

%

�
�

�

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

2

2

2

2

2

2

2 2

2 2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

2

2

2

2

Figure 2.2 Matrix showing which component teams (columns) will participate in the implementation of
each use case (rows).

The planning problem such a matrix is meant to obviate is illustrated in
Figure 2.3, where circles indicate what each component team is working
on at an instance in time. In this admittedly extreme example, though

everyone is hard at work, when complete the bits won’t plug together to
form any meaningful functionality.

While the problem with this approach is evident when looking at Figure
2.3, without use cases to provide a basis for knowing what a meaningful
chunk of functionality is, and without a matrix such as this to provide
a common visual roadmap for planning and coordination, distributed
development can readily drift into situations similar to that illustrated in
Figure 2.3, especially when teams span business groups or are separated
geographically. There’s a kind of a second law of thermodynamics that
applies to software development: Entropy happens in distributed software
development!

ALIGNING DECISION MAKING AND SYNCHRONIZING DISTRIBUTED DEVELOPMENT HORIZONTALLY IN THE ORGANIZATION 63

��� �����

��������	
����

�
�

�
�

	�

������ �� �����	
�����

��
��� ��������� �����

����� ���� �������� ���� ������

��
������ ���	���������

����
������ ����

��
������ ����� ������� �����

!
������� ���� �����	"����� #���$�

%������� ���	
���������

��
��� ���� ��� ����

&���� ����'��� �����

�������������� %��������

��
��� ��� �����(����

����� #���$�
��� ����

"��� ����'��� �
)�

!
������� ���� ������
�� "������

������ #���$�
� �
)� "�����

��
 ���������
��������

��
��� ��������� ����

**+

,+

,+

-+

-+

-+

.+

.+

/+

/+

0+

0+

0+

)+

)+

)+

�+

*+

&
�
�
�
�
�
�
�
�

�

�
�
��

�
�

�
�
�
�
�

�

�
�
�
��
�
��

!

��
��
��
��
��
�

�
�
��
�
�
�

�
��
�
�
!

��
��
��
��
��
�

�
�
�
�
��
�
��

��

�
��
��
�

�
��
�
��

�
�

!

��
��
��
��
��
�

�
��
�
��

)
�

!

��
��
��
��
��
�

�
��
�
��

�
�
��

�
�

�
�
�
�
�

�

�
��
�
��

�
��
�
�
�
�
�

�

��
��
�
��
�
�
�1

�
�
�
��

%

�
�

�

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

2

2

2

2

2

2

2 2

2 2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

2

2

2

2

Figure 2.3 Circles indicate work that each component team is doing at a given instance in time. Though
everyone is hard at work, when complete the bits won’t plug together to form any meaningful
functionality.

To be fair, “software development entropy” is not the only reason you might
find yourself in a situation such as that shown in Figure 2.3. In the “Big Bang
Integration” style of software development (i.e., wait until all bits are done,
then integrate them and test) the order in which you do component work
really doesn’t matter, in theory at least. For companies that utilized this phi-
losophy but are now trying to move over to the iterative, incremental devel-
opment philosophy of the Unified Software Development Process, Extreme
Programming, or the Agile community in general, old habits can die hard.

For whatever reason it happens, the solution to the problem shown in
Figure 2.3 is obvious: make sure that the component teams coordinate and
synchronize to work on the same use cases in the same priority order, with
QFD providing the means to determine that priority according to a given
set of business drivers.9

Planning the Length of Iterations and Number of
Use Cases per Iteration in Distributed Software
Development

There is another aspect of distributed software development that has pre-
sented problems for O&G in the past: planning the length of development
iterations and the number of use cases to deliver per iteration. While this
may be straightforward for use cases that are to be implemented by a sin-
gle team, distributed development of use cases introduces some twists,
namely:

1. Given a use case, not all component teams are affected equally in
terms of the effort required of them. Some teams will have a lot of
work to do, others just a little.

2. Not all component teams are staffed equally, so their capacity for how
much work they can take on varies.

64 CHAPTER 2

9 This approach is compatible with the Unified Software Development Process’ risk-driven plan-
ning for iterations, as long as risk is adequately represented in the business drivers used to priori-
tize the use cases via QFD. In such a case, high priority translates to high risk.

3. The implementation of use cases is rarely distributed across the same
set of component teams for any two use cases. This is evident from
looking at the matrix of Figure 2.4.10

ALIGNING DECISION MAKING AND SYNCHRONIZING DISTRIBUTED DEVELOPMENT HORIZONTALLY IN THE ORGANIZATION 65

10 To understand why this is an issue, imagine a matrix like that of Figure 2.2 where all use cases
were implemented by the very same teams. To select the number of use cases for an iteration, sim-
ply start picking the highest priority use cases until some team’s capacity for development is
exceeded (i.e., they have more work to do than they have staff to do it in the time allotted by the
iteration). It is the lack of this uniformity that makes the problem trickier; selecting use cases in
strict priority order simply does not work.
11 While the components associated with use cases are fairly realistic, use case priorities and efforts
to implement use cases are hypothetical.

Figure 2.4 Adaptation of the QFD matrix to facilitate what-if planning of number of use cases per iteration

in distributed software development.11

��� �����

��������	
����

�
�

�
�

	�

������ �� �����	
�����

��
��� ��������� �����

����� ���� �������� ���� ������

��
������ ���	���������

����
������ ����

��
������ ����� ������� �����

!
������� ���� �����	"����� #���$�

%������� ���	
���������

��
��� ���� ��� ����

&���� ����'��� �����

�������������� %��������

��
��� ��� �����(����

����� #���$�
��� ����

"��� ����'��� �
)�

!
������� ���� ������
�� "������

������ #���$�
� �
)� "�����

��
 ���������
��������

��
��� ��������� ����

**+

,+

,+

-+

-+

-+

.+

.+

/+

/+

0+

0+

0+

)+

)+

)+

�+

*+

&
�
�
�
�
�
�
�
�

�

�
�
��

�
�

�
�
�
�
�

�

�
�
�
��
�
��

!

��
��
��
��
��
�

�
�
��
�
�
�

�
��
�
�
!

��
��
��
��
��
�

�
�
�
�
��
�
��

��

�
��
��
�

�
��
�
��

�
�

!

��
��
��
��
��
�

�
��
�
��

)
�

!

��
��
��
��
��
�

�
��
�
��

�
�
��

�
�

�
�
�
�
�

�

�
��
�
��

�
��
�
�
�
�
�

�

��
��
�
��
�
�
�1

�
�
�
��

%

�
�

�

0

.

**

,

)

,

/

*2

0

*�

.

**

-

*0

*�

*�

,

0

*)

/

)

-

-

-

,

-

**

*2

.

**

,

0

**

*2

*�

)

,

)

/

/

0

/

/

**

/

,

/

)

3

,

*2

**

.

.

*�

)

*2

0

-

0

*�

*�

**

.

,

-

-

,

)

*2

*2

**

*2

3

0 3

0

-

/

*2

0

-

.

**

*)

-

3 -

*2 3

,

,

0

3

,

*2

,

3

-)

.

.

)

/

-

/

-

.

�
�

��
�

�
�

�
�

��
�

*

*

*

*

2

2

2

2

2

2

2

2

2

2

2

2

2

2

*3)� �0 *3 �0 �2 �- *3 *� -

� 0) �) �4/)4/ � *4/ *� �	��� �

�����
	� ��	��� ������ �

536 5-6 506 5�26 �� 5/6 5/6 � �

�� 02 �-)3 *0 �/ *3 �* -)
�	� !����	 �

"����#� �����
	� �

$

�

%&'

�'

(

����� ���)�#� �����	
	���	
��

��� ����� *	+���) ��, ���
	���	
��

��
��
	� ������	�-� ��
�	� �� +�� ����� *	+���) ��,

��
��
	� ������	�-� ��
�	� ��� .��� ��
	���	
��

�+�/�� �� ��������	 	���� �#�� �����
	�

�0

Taken together, these three factors can represent a non-trivial planning
problem for use case-driven distributed development. To address these
issues, O&G has developed an adaptation of the QFD matrix (see Figure 2.4;
Figure 2.5 shows formulas for implementation as an Excel spreadsheet).

The next six sections walk you through the mechanics of the matrix in
Figure 2.4 as a planning tool for use case-driven distributed development.
The matrix is used to plan one iteration at a time: iteration duration (here
in weeks) and scope (use cases). As the planning for one iteration is com-
pleted, the use cases for that iteration are “removed” (zeroing their priority
removes them from consideration) and the matrix is reused to plan the
next iteration. This process is repeated until all use cases have been allocat-
ed to an iteration.

66 CHAPTER 2

Figure 2.5 Excel formulas for QFD matrix.

Estimating Effort Required per Component Team to
Implement Use Cases

The first requirement for the O&G planning is to estimate the effort
required to implement a use case on a component team basis. For this, the
“Xs” of Figure 2.2 have been replaced in the matrix of Figure 2.4 with esti-
mates of effort, here expressed in terms of staff weeks (e.g., 2 staff working
4 weeks = 8 staff weeks of effort).12 Taking the sum of all effort in a column
provides the total effort required of a component team if all use cases are
implemented.13

But O&G wants to be able to play what-if games with the length and scope
of a development iteration, including and excluding use cases to see what
the total impact is on each component team in terms of required effort for
different sets of use cases. To do this, a new column is added to the matrix:
ON(1) / OFF(0). This column lets the O&G planning team turn use cases
“ON” or “OFF” for an iteration (i.e., be part of the next iteration or not). Row
Total Effort at the bottom of the matrix then tallies the effort, per compo-
nent team, for just the use cases that have been turned “ON”.

Estimating Capacity of Each Component Team for Work

As the O&G planning team does what-if analysis adding use cases to an
iteration, they need some way to tell whether each of the component teams
has been pushed over its limit in terms of how much work it can take on. To
address this, O&G planners first need to estimate the work of which each
team is capable. For this, two new rows are added to the top of the matrix;
refer to Figure 2.5. The first, # of Staff, is used to specify the number of staff
that is available for work on each component. Part time availability of staff
is represented as a fraction (e.g., component teams 2D and 3D Seismic

ALIGNING DECISION MAKING AND SYNCHRONIZING DISTRIBUTED DEVELOPMENT HORIZONTALLY IN THE ORGANIZATION 67

12 For ideas on estimating the effort required to implement a use case, see the “Techniques for
Estimating Effort” section in Chapter 8, “Leveraging Your Investment in Use Case CM in Project
Portfolio Management.”
13 Taking the sum of effort in a row provides the total effort needed across component teams to
implement a use case. This value can be used as a sanity check of effort required to implement the
use case versus its importance. A similar example of this is presented in this book: see the “Air Bags
and Hawaiian Shirts” section in Chapter 3, “Operational Profiles: Quantifying Frequency of Use of
Use Cases.” See also Cohen’s (1995) section on cost deployment.

Interpretation have one member that splits their time equally between the
two teams; hence, 2.5 and 3.5 available staff, respectively).

The second new row at the top of the matrix is Capacity, which is measured
in staff weeks of effort. The cells of this row are calculated by taking the
number of staff that are available to work on each component—previous
row, # Staff—times the number of weeks planned for the iteration (see
Weeks per Development Iteration at the bottom of the matrix in Figure
2.4). For example, the capacity for the Data Management component team
is 4 staff times 8 weeks of development, which equals 32 staff weeks of work.

Determining Component Teams that Are Over Allocated

With these new rows, the O&G planning team is now able to determine
when component teams have exceeded their limit in terms of how much
work they can take on. A row at the bottom of the matrix (refer to Figure
2.4)—Reserve Capacity—calculates the difference between available
capacity of component teams (row Capacity) and what is required of them
by the set of use cases that have been turned “ON” (Total Effort). Negative
values for Reserve Capacity (shown in parenthesis) indicate a team that is
being asked to do more work than they have capacity for. For example,
notice that in the matrix with the top four ranking use cases selected, the
capacity of six component teams to deliver has already been exceeded.

Keeping Score of What-If Scenarios

Just below the matrix in Figure 2.4, a number of measures are grouped into
a box to allow the O&G planning team to “keep score” of the what-if analy-
sis, comparing the results of one what-if scenario to the results of the next.
The scoreboard includes simple measures, such as:

• Iteration length in weeks.

• Number of use cases included in the iteration (i.e., the num-
ber with a “1” in their ON/OFF column).

• Sum of priority percentage points from the priority column
for those use cases that are “ON” (i.e., have a “1”).

68 CHAPTER 2

• The priority percentage points per week of development (i.e.
sum of priority percentage points divided by the number of
weeks in the iteration). Use of this measure will be illustrated
soon.

• Number of component teams that are over allocated (i.e.,
those teams with a negative value in row Reserve Capacity).

Maximizing the Bang for the Buck

All that remains is for the O&G planning team to find a set of use cases that
maximizes the bang for the buck for the iteration, while staying within the
capacity of each of the component teams. This is certainly something that
can be done by trial and error manually. As luck would have it, however, the
problem of planning the number of use cases per iteration that a distrib-
uted development team can implement fits pretty well into the mold of
what is called an optimization problem for which relatively inexpensive
tool support is available, for example, as add-ins to Excel. This is fortunate
for O&G, whose large cross-company programs sometimes have QFD
matrices two and three times the size of Figure 2.4.

An optimization problem is one that can be cast in a form like the following:

1. Select values for some set of parameters

2. Such that some “thing” (e.g., profits, cost, risk) is maximized or
minimized

3. All the while making sure certain constraint(s) are met

Using a matrix like that of Figure 2.5, you can couch the planning of use
cases for an iteration as an optimization problem like this:14

ALIGNING DECISION MAKING AND SYNCHRONIZING DISTRIBUTED DEVELOPMENT HORIZONTALLY IN THE ORGANIZATION 69

14 Again, as long as risk is adequately represented in the business drivers used to prioritize the use
cases via QFD, this approach is compatible with the Unified Software Development Process’ risk-
driven planning for iterations: high priority translates to high risk. In such a case, the optimization
problem becomes one of maximizing the set of risky use cases that can be developed by the dis-
tributed teams.

1. Select:

a. A set of use cases for the iteration (i.e., turn them on in the
matrix)

b. And a duration for the iteration (weeks)

2. Such that the priority percentage points per week of iteration is maxi-
mized (this is the sum of priority percentage points for all use cases
selected for the iteration, divided by the number of weeks in the
iteration)15

3. All the while making sure no component team is over allocated

Figure 2.6 shows an optimized matrix produced using Evolver, an optimiza-
tion problem solver add-in for Excel.16 Figure 2.7 illustrates the Evolver
setup used to produce the matrix of Figure 2.6. In this case, Evolver was set
to consider development iterations lasting between 4 to 8 weeks, a con-
straint imposed by the business needs of O&G.17

70 CHAPTER 2

15 Using a value like priority percentage points per week as the value to be maximized ensures that
the solution the optimization tool finds keeps the iteration length as short as possible. If you were
to maximize strictly based on total priority percent points of use cases delivered, the best way to
maximize that number is to simply increase the length of the iteration so that all use cases can be
implemented in one iteration; not a very useful answer.
16 Evolver has a variety of problem-solving methods; the “recipe” method is used here and assumes
implementation of one use case does not depend on another. If you have use cases whose imple-
mentation is dependent upon one another you can either bundle them as a single entry in the
matrix and adjust the effort for implementation accordingly (easiest solution) or extend the matrix
to allow notation of dependencies and utilize a different solving method in which certain use cases
are required to precede others.
17 My purpose in providing this screen shot is not to explain how to use Evolver, but rather convey
the “flavor” of such a tool and to illustrate it’s not “rocket science”; one setup interface was all that
was needed for this example.

Figure 2.7 Evolver is an optimization problem solver add-in for Excel. The setup shown here was used to
produce the optimized QFD matrix of Figure 2.6.

ALIGNING DECISION MAKING AND SYNCHRONIZING DISTRIBUTED DEVELOPMENT HORIZONTALLY IN THE ORGANIZATION 71

Figure 2.6 Planning the number of use cases per iteration in distributed software development cast as an
optimization problem.

First Iteration Planned: Plan Subsequent Iterations

To summarize the results of Figure 2.6, the answer to the optimization
problem produced by Evolver is for an initial development iteration of 6
weeks with delivery of three use cases (in gray) which average to 3.5% pri-
ority percentage points per week of development (sum of priority percent-
age points of use cases to be delivered divided by six weeks). In doing this,
several teams are down to a reserve capacity of zero, and several more close
to capacity (i.e., they have all the work they can handle).

With that, the planning for the first iteration of development in O&G’s port
of its products to the new shared earth model is complete. To plan the sec-
ond iteration, O&G repeats the process with the use cases identified from
the first iteration removed from the matrix (setting their priority to zero will
do the trick). This process is repeated until all use cases have been allocat-
ed to an iteration. The result will be a schedule that delivers the highest-pri-
ority use cases per iteration and utilizes component teams as well as can be
expected while not over-allocating any.

Chapter Review

Let’s review the chapter. Here are key points you’ve learned:

• The theme of QFD as a team planning/decision-making tool
was re-emphasized with two examples from the oil and gas
industry, first as a tool for synchronizing company-wide deci-
sion making, then as a tool for planning and synchronizing
use case-driven distributed development.

• While not “standard” manufacturing-based QFD, you may
find that in some instances it is more natural to work with use
cases first, business drivers second. In this case, the question
the QFD team asks themselves is: What is it that makes one
use case more important than another in terms of a project? In
doing so, you work backward to arrive at a team agreement on
what are the business drivers for the project. Whether work-
ing frontward or backwards, the end result is team alignment
on the business drivers.

72 CHAPTER 2

• While non-functional requirements are part of the fully
dressed use case, QFD adds additional value helping identify
non-functional requirements that are highest priority to a
suite of use cases as a whole. This was illustrated with an
example in which prioritized use cases were used to prioritize
non-functional requirements, and then the two combined—
use cases plus non-functional requirements—were used to
prioritize system design decisions.

• Use case-driven distributed development—development
involving implementation by multiple component or product
teams—presents a number of challenges for an organization.
One problem is that of making sure the vision is clear as to
what needs to be worked on by each team and in what order.
A QFD matrix of prioritized use cases (rows) and component
teams involved in implementation (columns) is an effective
tool for communicating the game plan.

• A second problem associated with use case-driven distrib-
uted development is that of planning the length of develop-
ment iterations and the number of use cases to deliver per
iteration. This problem has three contributing factors: not all
component teams have the same amount of work to do in
implementing a use case; not all component teams are staffed
equally; and each use case may very well have a unique set of
component teams implementing it. Luckily, the problem fits
well into the mold of an optimization problem, and a QFD
matrix can easily be run through an optimization tool to help
a team determine an optimal length of time for an iteration
and the set of highest-priority use cases that can be imple-
mented in that time across the distributed teams.

ALIGNING DECISION MAKING AND SYNCHRONIZING DISTRIBUTED DEVELOPMENT HORIZONTALLY IN THE ORGANIZATION 73

This page intentionally left blank

Working Smart to Deliver Reliability in Use Case
Development

“Software Reliability Engineering: More Reliable Software, Faster
and Cheaper”

—the slogan of SRE, John Musa

Software Reliability Engineering (SRE) is about increasing customer satis-
faction by delivering a reliable product while minimizing engineering
costs. Use case-driven development and SRE are a natural match, both
being usage-driven styles of product development.1 What SRE brings to the
party is a discipline for focusing time, effort, and resources on use cases in
proportion to their estimated frequency of use, or criticality, to maximize
reliability while minimizing development costs. Consider this: Is it really
necessary to apply the same level of rigor to the engineering—analysis,
inspection, development and testing—of all use cases? By understanding
how a product is really going to be used by the user, the engineering team

75

Part 2

Software Reliability
Engineering

1 For a comparison of the two disciplines, see Runeson and Regnell (1998), Derivation of an
Integrated Operational Profile and Use Case Model.

can focus its efforts on those use cases most likely to have defects in oper-
ational use by the customer. The result: Higher reliability as experienced by
the customer, while minimizing development and test costs. Or as John
Musa says, “More reliable software, faster and cheaper.”

The field of SRE traces its roots back to work being done at AT&T Bell Labs,
Murray Hill, in the early 1970s by pioneers such as John Musa. SRE contains
two ideas that, after the fact, leave you wondering why somebody didn’t
pioneer the subject earlier. The first is to quantify frequency of product use
by the user. Use cases and scenarios already provide a discrete unit for
describing product use; SRE provides the means to quantify that use with
what is called an operational profile.

In Chapter 3, “Operational Profiles: Quantifying Frequency of Use of Use
Cases,” we’ll look at building operational profiles for the scenarios that
make up a single use case and for a package of use cases.2 Examples are
provided to illustrate the use of operational profiles to work smart in how
you plan the activities that affect your product reliability. The chapter will
conclude by showing how to extend operational profiles to address risk
profiling of use case packages.

The second idea SRE brings to use case development is a concrete way to
talk about “reliability,” including how to define it, measure it, set goals in
terms of it, and track it in testing. This is the focus of Chapter 4, “Reliability
and Knowing When to Stop Testing.”

76 PART 2

2 In UML, a use case package is a logical grouping of use cases and/or other use case packages. An
operational profile can be built for a package, for the use cases of multiple packages, or for all the
use cases of a system. To keep things simple, operational profiles will be discussed in terms of a
“package” (singular), but just keep in mind it may in fact be a package pulling some or all of the
use cases from a number of other packages.

A use case with many bugs can seem reliable if the user spends so little time
running it that none of the many bugs are found. Conversely, a use case
that has few bugs can seem unreliable if the user spends so much time
running it that all those few bugs are found. This is the concept of perceived
reliability: it is the reliability the user experiences, as opposed to a
reliability measure in terms of, say, defect density. SRE begins by defining
the operational profile of a product: a description of the product’s usage
patterns that includes frequency of use. This allows the engineering team to
optimize development and testing, concentrating on the most frequently
used use cases, and hence having a greater chance of failure in the hands of
the user.

By taking such an approach, project teams work smarter—not harder—to
deliver a reliable product.

In this chapter, we’ll start by looking at building operational profiles for the
scenarios that make up a single use case, followed by building operational
profiles for a package of use cases. This chapter will conclude by showing
you how to extend operational profiles to address risk profiling of use case
packages.

77

3

Operational Profiles:
Quantifying Frequency

of Use of Use Cases

Operational Profile of Use Case Scenarios

Let’s begin with the operational profile for the scenarios that make up a sin-
gle use case. Figure 3.1 shows a stylized use case with numbered blocks rep-
resenting steps in the use case. This use case is made of six scenarios that
represent different paths through the use case.

78 CHAPTER 3

�

�

�

�

��

�� �� ��

Figure 3.1 Stylized use case with six scenarios. Numbered blocks are steps in use case.

The scenarios for the use case in Figure 3.1 can be described in terms of the
steps that make each up; they are:

• 1, 2, 3, 4

• 1, 2, 3, 1

• 1, 2, 3a, 4

• 1, 2, 3a, 4a

• 1, 2, 3a, 4b

• 1, 2, 3a, 4c

An operational profile of this use case will spell out the relative amount of
traffic, so to speak, that we expect each of these scenarios to receive.

Decision Graphs

A common technique for producing an operational profile is a decision
graph, and it works perfectly for building an operational profile of a use
case’s scenarios. A decision graph is a means for calculating the probabili-
ty of an event; in this case, the probability that the user will use one
scenario (i.e., path through the use case) over the next.

Calculating Probabilities of Scenarios

As Figure 3.2 illustrates, our use case of Figure 3.1 is easily converted to a
decision graph model.

OPERATIONAL PROFILES: QUANTIFYING FREQUENCY OF USE OF USE CASES 79

�

�

�

� �� �� ��

��

����

��

�	

�	
�
�

��

��
 ��
 ���

Figure 3.2 Decision graph of use case.

In a decision graph model of a use case, each path (or edge as they are
called in graph theory) leaving each step in the use case is assigned a prob-
ability. It is the probability with which we expect that path to be used rela-
tive to alternate paths leaving the same step. The probability of all paths
leaving a step must sum to 1. So for example, after a user has executed step
2 in Figure 3.2, we expect that 80% of the time the user will go to step 3 next
and 20% of the time they will go to step 3a.

After probabilities are assigned to each path, the probability of each sce-
nario is calculated by taking the product of the probabilities of paths in that
scenario. For example, the probability of scenario 1, 2, 3, 4 is

1 × .8 × .8 = .64

What this means is that we expect this scenario to receive 64% of user traf-
fic through the use case. The probability of each scenario of Figure 3.2 is
shown in Table 3.1 and displayed as a pie chart in Figure 3.3. A pie chart in
particular helps drive home the point that traffic loads through a use case
can vary dramatically between scenarios.

Table 3.1 Probability of each scenario of Figure 3.2 (rounded to two decimal places)

Scenario Probability

1, 2, 3, 4 0.64

1, 2, 3, 1 0.16

1, 2, 3a, 4 0.13

1, 2, 3a, 4a 0.03

1, 2, 3a, 4b 0.03

1, 2, 3a, 4c 0.01

TOTAL 1.00

80 CHAPTER 3

16%

13%

64%

3%
3% 1%

1, 2, 3, 4

1, 2, 3, 1

1, 2, 3a, 4b

1, 2, 3a, 4c

1, 2, 3a, 4a

1, 2, 3a, 4

Figure 3.3 Probability of each scenario of Table 3.1 displayed as pie chart.

Implementing a Decision Graph as a Spreadsheet
Matrix

Calculating probabilities for each scenario can be a chore. One idea to
address this is to replace or augment the decision graph with a matrix
implemented as a spreadsheet. Figure 3.4 provides a matrix implementa-
tion of the decision graph of Figure 3.2.

In the matrix of Figure 3.4, rows and columns are labeled with the steps in
the use case. Cells provide the probability of user traffic moving from step
X (row) to step Y (column). For example, the circled cell in Figure 3.4 states
that from use case step 2 there is an 80% probability that step 3 will be next.
A matrix such as this, implemented as a spreadsheet, allows one to then
quickly determine the probability of each scenario, as illustrated in Figure
3.5. Broekman and Notenboon (2003) use the matrix approach in lieu of the
pictorial decision graph. Which you use is a matter of taste.

OPERATIONAL PROFILES: QUANTIFYING FREQUENCY OF USE OF USE CASES 81

Figure 3.4 Spreadsheet matrix implementation of decision graph of Figure 3.2. Rows and columns are steps
in the use case. Circled cell says that from use case step 2 (row), there is an 80% probability that
the user will next go to step 3 (column). All values in a row must sum to 1.0.

Figure 3.2, Table 3.1, and Figure 3.5 collectively form the operational profile
for our use case. You are quite likely to find instances in the literature where
the table, the pictorial decision graph, or the matrix, each by itself, is pre-
sented as the operational profile. They are essentially different views of the
same thing.

Figure 3.5 Arrows indicate probabilities used to calculate scenario made of steps 1, 2, 3a, and 4. The proba-
bility is 1× 0.2 × 0.64 = 0.13.

Pareto Principle and Guesstimates

Without empirical results from the field or usability studies, the probabili-
ties you use in your use case decision graph will likely be “guesstimates.”
Rather than spending a lot of time agonizing over the numbers, there’s
always the Pareto Principle, which you might find useful to apply to the
operational profile.

The term “Pareto Principle” (or Pareto Law, or simply the 80/20 rule) was
coined by Joseph Juran in his Quality Control Handbook, first released in
1951. He based the term on the work of Italian economist Vilfredo Pareto
who observed that in modeling the distribution of wealth and land, 80 per-
cent was held by 20 percent of the population. Juran’s original application
of this distribution was applied to manufacturing where he observed that
80% of the problems reported stemmed from 20% of all types of defects.

82 CHAPTER 3

The Pareto Principle has subsequently proved a good model for many phe-
nomena, both in the natural and social world, including software engineer-
ing, with rules of thumb such as “20% of the modules contain 80% of the
defects” (Juran 1988).

So, when all else fails—you have no empirical data from the field, you don’t
have time for a usability study, and you are frustrated at guessing—you
might find it useful to apply the Pareto Principle to operational profiles:
20% of the paths exiting a use case step will carry 80% of the user traffic. I
can’t offer you any scientific study that says the Pareto Principle is a proven
success on this, but I do think it will help you and your team get over the
“analysis paralysis” of agonizing over probabilities of use case step exit
paths. Let’s see how this works.

Quick, Low-Tech Approach

Here’s a really quick, low-tech approach. Take the number of paths exiting
a use case step and multiply by 20%; for most use cases this will yield 1 or 2
exit paths (e.g., 20% of 10 exit paths = 2). Distribute 80% of the traffic across
these 1 or 2 steps. For the remaining steps, distribute 20% of the traffic
across them. It doesn’t have to be a uniform distribution. After you’ve kind
of thrown the probabilities out there, step back and let your intuition take
over to readjust.

For this to work, you still have to be able to put the exit paths in order from
high-traffic to low, but that’s a lot easier to do than assigning probabilities.
This quick approach to the Pareto Principle will give you a rational
approach for guesstimating the probabilities to kind of get you past analy-
sis paralysis. Your intuition can then be used to fine tune things.

Successive Application of Pareto

If you want to get more rigorous in the application of the Pareto Principle,
you can do successive applications. For example, after you’ve split a set of
exit paths into two groups, one receiving 80% of the traffic and the other
receiving 20%, you can reapply the Pareto Principle to the exit paths with-
in each set. Figures 3.6 and 3.7 illustrate this notion of successive applica-
tion for the two examples where the initial 80% of traffic is allocated to 1
and 2 exit paths, respectively.

OPERATIONAL PROFILES: QUANTIFYING FREQUENCY OF USE OF USE CASES 83

Figure 3.6 Successive application of Pareto Principle where initial 80% is allocated to a single use case exit
path.

84 CHAPTER 3

��� �� ����	

�� �� ������

�� �� ����	

��� �� ������

��� �� ����	

�� �� ������

�� �� ����	

��� �� ������

�
 �� � �
 � ���

��������� ����

����	 	���� ��

��� ��	����� ���

��� �� ����	

�� �� ������

�� �� ����	

��� �� ������

��� �� ����	

�� �� ������

�� �� ����	

��� �� ������

�
 � �
 � ���

�� � �
 � ���

��������� ����

����	 	���� ��

��� ��	����� ���

�� �� ����	

��� �� ������

��� �� ����	

�� �� ������

�
 � �� � ���

Figure 3.7 Successive application of Pareto Principle where initial 80% is allocated to two use case exit
paths.

Notice that in both these cases, with just two successive applications of the
Pareto Principle, you will have allocated 96% of the traffic. The remaining
4% can then be allocated as you see fit.

So keep these two Pareto patterns in your back pocket; they may be all you
need for most use case exit paths:

• .8 for the highest trafficked exit path, .16 for the next, and allo-
cate .04 across the rest

• .64, for the highest trafficked, .16 and .16 for the next two, and
then allocate .04 across the rest (for example, see step 3a of
Figure 3.2)

Using one of these two patterns is probably as safe a guesstimate as any
other.

Working Smarter: Scenarios of a Use Case

To this point, we’ve been talking about how to build an operational profile
of the scenarios that make up a single use case. Now we get to the working
smarter part of operational profiles: putting them to work.

In this section, we look at examples that illustrate utilizing the use case
operational profile in planning. Many of the examples will come from test
planning; testing is a key consumer of the operational profile, plays a fun-
damental role in product reliability, and represents one of the biggest costs
in a project. But keep in mind that operational profiles can be used as a way
to prioritize and allocate effort and resources for just about every facet of
development.

In planning and estimation, two common approaches are time-boxing and
bottom-up. Time-boxing is a top-down strategy usually associated with
iterative software development in which the duration of task or project
(that’s the “top”) is fixed, forcing hard decisions to be made about what
scope can be delivered in the allotted time. The other strategy is bottom-
up, in which you start with the scope to be developed and tested (use cases;

OPERATIONAL PROFILES: QUANTIFYING FREQUENCY OF USE OF USE CASES 85

that’s the “bottom”), then roll-up estimates from that level to determine the
time needed for the overall task or project (the “top”).

In the next several examples, we look at the operational profile as used in
top-down and bottom-up planning.

Time-Boxing an Inspection

Let’s say you are planning an inspection of the use case your team has just
developed, and the decision graph of Figure 3.2 and operational profile of
Table 3.1 are for this new use case. You have a one-time shot at getting key
domain experts and customer reps as part of the review team. The inspec-
tion is scheduled to last three hours. What is the best use of the review
team’s time?

First, you determine the order in which to review the materials by using the
operational profile for the use case: those with highest relative frequency in
the operational profile first. That way, if you run out of time in the review—
and chances are, you will—you will have covered the most frequently used
scenarios first. Second, the operational profile provides a way to sensibly
allocate time in the review in proportion to the relative frequency of the
scenarios in the use case.

The spreadsheet of Figure 3.8 illustrates an allocation of review time in
hours per scenario based on the operational profile. Scenario 1, 2, 3, 4
accounts for 64% of the traffic we expect through this use case; according-
ly, you decide that if the review team is on a roll and finding good issues,
you plan to allocate 64% of the review time—1.9 to 2 hours—to just this
high-frequency scenario. If the review team finishes in less time, great!
Otherwise, it’s worth a full two hours. At the end of the two hours, you plan
to move on to the next two scenarios—1, 2, 3, 1 and 1, 2, 3a, 4—which
account for 16% and 13% of the use case traffic, respectively. This works out
to about one-half hour of review time each for these two scenarios (3 hours
times 16% = .5 hours; 3 hours times 13% = .4 hours).

In the three-hour review, you plan to spend your time on the scenarios that
account for 93% of the traffic through the use case. If the review team fin-
ishes these scenarios ahead of time, you can move on to the last three,

86 CHAPTER 3

which collectively account for only 7% of the traffic. This, you feel, is a bet-
ter strategy than having the review team rush to try to get through all six
scenarios.

OPERATIONAL PROFILES: QUANTIFYING FREQUENCY OF USE OF USE CASES 87

Figure 3.8 Priority order and breakdown of time (hours) to allocate per use case scenario during inspection.

As this example illustrates, the idea behind working smart with operational
profiles is very straightforward: you simply allocate effort, resources, or, in
this case, time, based on the relative frequency of each scenario in the use
case. Next, you’ll see an example of allocation of resource via an operational
profile; in this case, test cases.

Bottom-Up Estimation of Tests Needed per
Scenario

The previous example looked at using an operational profile in a top-down,
time-boxing fashion. Another common strategy for planning is bottom-up.
In bottom-up planning, you start with the scope to be developed and test-
ed (use cases; that’s the “bottom”), make estimates at that level, and then
roll them up to determine the time needed for the overall project, event, or

phase (the “top”). Here’s an example of an operational profile used in bot-
tom-up planning to estimate the number of tests you need for each sce-
nario of a use case. Time estimates, say for test design and or test execution,
can be made by multplying the number of tests by an estimate of time
needed per test. For a package of use cases, this process would be applied
for each use case in the package to get a bottom-up estimate for the pack-
age as a whole.

You have been asked to design and run tests on the new Widget Manager
Use Case and asked for an estimate of how long it might take. The use case
has six scenarios, so to get things going you start with the assumption that,
at minimum, each scenario will require one test, for a total of six. Using the
use case’s operational profile—implemented via a spreadsheet—you build
the table shown in Figure 3.9 to see how those six tests would be allocated
as per the profile.

88 CHAPTER 3

Figure 3.9 Allocation of six tests via the operational profile. Formula shown in Excel.

The operational profile calls for the bulk of tests to be allocated to the first
three scenarios, which account for 96% of the use case traffic; this makes
sense. You see, however, that the last three scenarios, which only account

for 4% of the use case traffic, receive only fractions of a test each. You real-
ize fractions of a test make no sense. But rather than pull tests away from
the other scenarios (remember that they are 96% of the use case traffic),
you decide to round up all fractions to the next higher whole number of
tests (see Figure 3.10).

OPERATIONAL PROFILES: QUANTIFYING FREQUENCY OF USE OF USE CASES 89

Figure 3.10 Fractions of tests as per operational profile are rounded up to the next higher whole number of
tests. Formula shown in Excel.

Eleven tests, as allocated in Figure 3.10, strike a good balance between allo-
cating tests in a way that makes sense as per the operational profile and
having at least one test per scenario. Finally, you estimate three staff hours
to design and execute a test, for a total of 33 staff hours for the whole use
case.

Whether you plan top-down (e.g., time-boxing) or bottom-up, operational
profiles are a smart way to allocate time, effort, and resources across the
scenarios of a use case.

Operational Profile of a Use Case Package

To this point, we’ve looked at how to describe and use an operational pro-
file for the scenarios that make up a single use case. Of course, few projects
deal with just a single use case, so next we turn to the question of how to
describe and use an operational profile for a package of use cases.

Operational profiles are a part of Binder’s Extended Use Case Test Design
Pattern (2003), and he offers the following simple example of a system with
two use cases, search and update. If you have a product in which, on aver-
age, 90,000 searches and 10,000 updates are done daily, the relative fre-
quency of the search and update use cases are .90 and .10, respectively (see
Table 3.2).

Table 3.2 Simple example of operational profile for two use cases

Use Case Times Used per Day Probability

Update 90,000 0.90

Search 10,000 0.10

TOTAL 100,000 1.00

Notice that this technique does not require a decision graph. It simply esti-
mates the number of times a use case is used per unit time and then calcu-
lates the relative frequency, or probability, from that. This is as about as
straightforward and simple a way as there is to construct an operational
profile for a package of use cases.

Sanity Check Before Proceeding

UML provides for the modeling of generalizations of, and extensions and
addition of behavior to, base use cases. In the next section, we are going
to look at how to build operational profiles for use cases that utilize these

90 CHAPTER 3

1 There has been a fair amount of debate in the use case community as to the merit of these rela-
tionships—in particular include and extend—in use case modeling. This section describing how to
build an operational profile for these relationships is meant neither to encourage nor discourage
their use.

relationships.1 If you don’t use these relationships, what was covered in the
previous section will be plenty to get you started building operational pro-
files for a package of use cases. So, if you do not use these relationships, feel
free to skip ahead to examples of using the operational profile in planning
(see “Working Smarter: Use Case Packages” section).

Use Case Relationships

UML provides simple notation to describe the relationships between use
cases. With the release of UML version 1.3, these relationships received
major revision, adding a new relationship—generalization—and redefining
others.2 The list that follows includes definitions for the relationships that
can be expressed between use cases as they stand in version 2.0 of UML
(Rumbaugh, Jacobson, and Booch 2003).

• Generalization—A relationship between a general use case
(parent) and a more specific use case (child) that inherits
from, and adds to, the features and behavior of the general
use case.

• Extend relationship—A relationship between a base use case
(the use case to be extended) and an extension use case (the
use case doing the extending). The relationship describes the
conditional insertion of additional behavior (the extension)
into the base use case. The behavior is inserted at the location
defined by the extension point in the base use case and refer-
enced by the extend relationship. The base use case does not
“see” or “know about” the extension use case, so it cannot
access its attributes or operations.

• Include relationship—A relationship between a base use case
(the use case to which behavior is to be added) and an
inclusion use case (the behavior added). The relationship
describes the mandatory insertion of additional behavior (the
inclusion) into the base use case. The behavior is included at
the location defined in the base use case.

OPERATIONAL PROFILES: QUANTIFYING FREQUENCY OF USE OF USE CASES 91

2 Armour and Miller (2001) provide a good explanation of these relationships, and in particular
changes in the semantics of include and extend from earlier versions (previous to 1.3) of UML.

An example will help illustrate these relationships. For the task at hand I’ll
focus on those aspects of the relationships that are pertinent to building an
operational profile.

Sales Order Example

Figure 3.11 presents a typical sales order use case diagram utilizing rela-
tionships generalization, include, and extend.3 In this example, we have six
base use cases (i.e. those that are not inclusions or extensions). First is Place
Order; this is a generalization that specifies the common behavior of all
place order use cases.

The next three use cases—Place Local Order (in state), National Order (out
of state), and International Order (out of the country)—are children of
Place Order and inherit all its properties and behavior, just like inheritance
in objects. Each of the children then specialize these properties and behav-
ior to accommodate their respective situations in terms for example of tax,
regulations governing shipping across state and international boundaries,
tariffs, and so on.

The last two base use cases are Cancel Order and Check Order Status,
whose functions should be self-evident.

In what follows, we are going to build an operational profile for our sales
order example. We’ll proceed like this:

1. First, we estimate the frequency of use of base use cases, those to
which extensions and inclusions will be made.

2. Next, we estimate the frequency of use of include and extend use
cases used stand-alone (i.e., by themselves as regular, instantiated use
cases, if any).

3. Finally, we estimate the frequency of use of include and extend use
cases by the base use cases to which they are related.

At that point, our operational profile will be complete.

92 CHAPTER 3

3 Example based on Object Modeling Group’s spec for UML version 1.5. See the UML Notation
Guide at www.uml.org.

www.uml.org

Figure 3.11 Use case diagram illustrating relationships between use cases.

Step 1—Start with Base Use Cases

We begin our operational profile with the base use cases—those to which
inclusions/extensions are made—and estimate the number of times each
is executed in some unit of time; here, daily (see Figure 3.12). This informa-
tion would come from empirical field data, usability studies, or simply your
best educated guess. Notice that in this table Place Order, the parent in the
generalization relationship of Figure 3.11, is shown with a zero: it turns out
to be an abstract use case (i.e., it is not fully specified to the point it can be
instantiated for standalone use and is used solely for defining the common
properties and behavior of its children). For an operational profile, this
determination needs to be made for all use case generalizations.

OPERATIONAL PROFILES: QUANTIFYING FREQUENCY OF USE OF USE CASES 93

Place Order

Local Order National Order International
Order

Cancel Order

Check Order Status

Enter Customer Data

Order Product

Arrange Payment

Request Catalog

<<include>>

<<include>>

<<include>>

<<extend>>

<<extend>>

<<extend>>

Figure 3.12 Base use cases and estimate of times per day each is executed. The zero for Place Order
(circled) indicates that it is an abstract use case: not fully specified and never instantiated for
use standalone.

Step 2—Include and Extend Use Cases Used Standalone

Next, we turn our attention to the four include/extend use cases; these are
use cases that are used to extend base use cases (Request Catalog in Figure
3.11) or be included in base use cases (Enter Customer Data, Order
Product, Arrange Payment in Figure 3.11).

But a pertinent aspect of these use cases with regards to operational pro-
files is that per the UML, they may possibly be used as standalone use cases.
Given they are fully specified (i.e., are not “fragments”) they can be instan-
tiated and used as regular use cases (Rumbaugh, Jacobson, and Booch
2005). Another way to look at this, which might make more sense: the UML
provides for the use of otherwise “regular” use cases to be used as exten-
sions and inclusions to other “regular” use cases. In such a case, the opera-
tional profile needs to take into account such usage.

Figure 3.13 reflects this new information and shows the number of times a
day we estimate these use cases will be used standalone: instantiated and
executed as regular use cases by themselves, rather than in the role of an
extension or inclusion to another base use case.

In Figure 3.13, notice that use cases Enter Customer Data and Order
Product are shown with zeroes (circled). This indicates that these particu-
lar use cases are never expected to be used standalone; they are only used
as inclusions to base uses cases. Both Enter Customer Data and Order
Product, while necessary, are not sufficient to be standalone in and of

94 CHAPTER 3

���� ��� ����� ����� 	�
 ���

���������

����� �����

����� �	��� �����

�����
���	
�� �����

����� �
���
���	
�� �����

��
��� �����

����� ����� ������

�

��

���

��

��

���

����

����

����

����

����

����

themselves (they are use case fragments, i.e., not fully specified, and can’t
be instantiated). Arrange Payment and Request Catalog, on the other
hand, are fully specified, able to be instantiated, and expected to be used
daily at the specified rates. Taking Request Catalog, for example, we expect
that about forty times a day a customer will phone a salesperson for the
sole purpose of requesting a new catalog.

OPERATIONAL PROFILES: QUANTIFYING FREQUENCY OF USE OF USE CASES 95

���� ��� ����� ����� 	�
 ���

���������

����� �����

����� �	��� �����

�����
���	
��� �����

����� �
���
���	
�� �����

��
��� �����

����� ����� ������

�

��

���

��

��

���

����

����

����

����

����

����

������� ��� ������

��� ����� ����� 	�
 ���

���������

����� 	�
 ���

����������

����� 	�
 ���

���� ���� ���

����

�����

��� ����	!�� "���

����� ��	����

����
#� ��$!�
�

%�&���� �����	#

�

�

��

��

�

�

��

��

����

����

����

����

'�� ����

Figure 3.13 Times per day include and extend use cases are executed standalone. Zeroes (circled) indicate
that these use cases are never used standalone.

Step 3—Include and Extend Use Cases Used with Base
Use Cases

The last step in our operational profile is to account for the number of
times that include and extend use cases are executed as a result of being
inclusions and extensions of base use cases.

In Figure 3.14, notice that the operational profile now includes a matrix
titled Probability of Use by Base Use Case that describes the include and
extend relationships shown in Figure 3.11. Rows of the matrix correspond
to base use cases, and columns correspond to include or extend use cases.

A cell in the matrix provides the probability with which we expect the base
use case to actually invoke the inclusion or extension.

For example, the cell marked by a circle in Figure 3.14 indicates that with a
probability of .20—think 20 times in every 100 times some customer calls a
salesperson to check on their order—we expect the customer to addition-
ally request a catalog. Given that we expect the Check Order Status use
case to execute 100 times a day, we would then expect the Request Catalog
to be used 20 times a day as an extension to Check Order Status.

96 CHAPTER 3

���� ��� ����� ����� 	�
 ���

���������

����� �����

����� �	��� �����

�����
���	
�� �����

����� �
���
���	
�� �����

��
��� �����

����� ����� ������

�

��

���

��

��

���

����

����

����

����

����

����

������� ��� ������

��� ����� ����� 	�
 ���

���������
����� 	�
 ���

����������

����� 	�
 ���

���� ���� ���

����

�����

�
��� ����	��� ���

����� ��	����

����
!� ��"��
�

#�$���� �����	!

�

�

��

%�

�%�

�%�

���

��&

����

����

����

���'

�(�% ����

�%�

�%�

�%�

'&

��������� �� ��� �� ���� ��� ����

�
���
����	���
 ���

�����
��	����

����
!�
��"��
�

#�$����
�����	!

�
����� �
����� �
����� �)��
�

��'�

��'�

��'�

��'�

��'�

��'�

��'�

��'�

��'�

��'�

��'�

��'�

����

����

����

����

����

����

Figure 3.14 Operational profile with matrix describing probability that a base use case will invoke an inclu-
sion or extension. The circle indicates that Request Catalog extends base use case Check Order
Status with probability .20, or 20% of the time.

This same principle is used for each include and extend use case; the num-
ber of times the base use case is executed daily is multiplied times the
probability of invocation of the include/extend use case to come up with
an estimate of the number of times the include/extend use case is used. In
Excel, this is easily done with the SUMPRODUCT function; Figure 3.15
shows the formula for calculating the number of times a day Request
Catalog is used as an extension by the base use cases.

Figure 3.15 Use of SUMPRODUCT function to calculate estimate of number of times Request Catalog is
invoked as an extension daily.

The grand total number of times an include/extend use case is used daily
is the sum of the times it is used standalone plus the number of times it is
used as an inclusion or extension.

After the total number of daily executions of both base use cases and
include/extend use cases is available, the overall probability of each use
case relative to the rest can be calculated; see spreadsheet columns F
and G in Figure 3.15. A pie chart of the operational profile is shown in
Figure 3.16.

Remember that a base use case combined with an include/extend use case
results in a new use case composed of the two. But keep in mind that the
frequency of use information in the operational profile addresses the base
use case and include/extend use cases separately: any reference to the base
use case in the operational profile refers to just the base use case, not the
use case formed by inclusion/extension.

OPERATIONAL PROFILES: QUANTIFYING FREQUENCY OF USE OF USE CASES 97

Figure 3.16 Operational profile of sales order example shown as pie chart.

With the operational profile in hand, we now have a quantitative way to
allocate effort and resources to these use cases in a way that matches their
expected frequency of use by the customer. But before we look at examples
of how to work smartly with this operational profile, some discussion is in
order about establishing the probabilities with which base use cases
actually use include/extend use cases.

Probability that Include/Extend Use Cases Are
Actually Used

The matrix of Figure 3.14 titled Probability of Use by Base Use Case
describes the include/extend relationships shown in Figure 3.11. Each cell
in the matrix provides the probability with which we expect the base use
case (row) to actually invoke the include/extend use case (column). But
where do we get those probabilities? How do we know what reasonable val-
ues would be?

In what follows, let’s look at the detailed way to approach this question and
then conclude with a quick, low-tech way. By understanding the detailed
way first, you’ll have a little better feeling about applying the low-tech way.

98 CHAPTER 3

������ �����

	

����� �
��� �����

�

����� �����

������

�

������� �����
�

�

����� ����
���

����

��

����� ��
����

��

����� ���
���

�����

��

!������ ��"����

�	

����� #�������
���

�����

	

The Detailed Approach

Inclusions and extensions in UML both have the property that flow of con-
trol returns to the base use case at the same point where the
inclusion/extension took place (i.e., the inclusion point or extension point,
respectively).4 Inclusion/extension points are like discrete points on a use
case path that are either expanded in-line like a macro (my mental model
for include) or act like a subroutine call which leaves and returns to the
same point (my mental model for extend).

Given this, let’s return to the decision graph of our stylized use case of
Figure 3.2 and imagine that it is the decision graph of base use case Place
Order of the use case diagram of Figure 3.11 and the operational profile of
Figure 3.14. Then let’s say that steps 3 and 4 of the decision graph of Place
Order are in fact the inclusion and extension points for Arrange Payment
and Request Catalog use cases, respectively, as illustrated in Figure 3.17.

OPERATIONAL PROFILES: QUANTIFYING FREQUENCY OF USE OF USE CASES 99

�

�

�

� �� �� ��

��

����

��

�	

�	
�
�

��

��
 ��
 ���

�������

����
���

�����
�

��	���

�������

�������

Figure 3.17 Decision graph of base use case Place Order with arrange Payment as an inclusion point (step
3) and Request Catalog as an extension point (step 4).

4 Armour and Miller (2001) provide a good discussion on this aspect of inclusion/extension and
how it is distinct from alternate flows and exception paths in a use case.

Working from Figure 3.17, let’s now ask the question again: What is the
probability that Place Order will actually invoke the Arrange Payment
inclusion or the Request Catalog extension? Let’s start with Arrange
Payment. Table 3.3 provides the probability of each of the scenarios of
Figure 3.17. (This is simply a reprint of Table 3.1, so look there if you are
unsure how it was built.)

Table 3.3 Probability of each scenario of Figure 3.17

Scenario Probability

1, 2, 3, 4 0.64

1, 2, 3, 1 0.16

1, 2, 3a, 4 0.13

1, 2, 3a, 4a 0.03

1, 2, 3a, 4b 0.03

1, 2, 3a, 4c 0.01

TOTAL 1.00

In which scenarios do we invoke the inclusion of Arrange Payment
(remember, it is step 3)? It is invoked in scenarios 1, 2, 3, 4 and 1, 2, 3, 1. By
adding the probability of these two scenarios, we get the probability that
Place Order will invoke the Arrange Payment inclusion:

.64 (probability of 1, 2, 3, 4) + .16 (probability of 1, 2, 3, 1) = .80

OK, now how about the Request Catalog? In which scenarios do we invoke
the Request Catalog extension (remember, it is step 4)? It is invoked in
scenarios 1, 2, 3, 4 and 1, 2, 3a, 4. So the probability of invoking the Request
Catalog is:

.64 (probability of 1, 2, 3, 4) + .13 (probability of 1, 2, 3a, 4) = .77

Well, that isn’t quite true for Request Catalog; it’s an extend use case so it’s
a tad messier (notice how things never get a tad simpler?). Remember the
UML definition of an extend use case: the extension is “subject to specific
conditions specified in the extension.” If the condition, specified as part of

100 CHAPTER 3

the extend use case, is met, the extension is executed; otherwise, the base
use case flow resumes as is (i.e., the extension becomes a “no-op”—nothing
happens).

For our particular example, we would likely need field data to indicate the
frequency with which a catalog is requested in conjunction with placing an
order; otherwise, we make an educated guess. Let’s try the educated guess
route and use our Pareto Principle heuristic from earlier in the chapter.
First, what is the most likely event from high to low, to request a catalog or
not? You decide that no catalog request is probably the most likely of the
two. OK, our Pareto heuristic says that 20% of the exit paths from a use case
step will account for 80% of the traffic. Because we’ve only got two possible
choices—they request a catalog or not—we take the probability of no cata-
log request at .8, which means that the probability for a catalog request
is .2.

To summarize, the probability that the Place Order use case invokes the
Request Catalog extension is the probability of the use case flow taking one
of the scenarios on which the request catalog extension lies (scenarios 1, 2,
3, 4 and 1, 2, 3a, 4 of Figure 3.17) times the probability that the customer
actually wants a new catalog when asked:

(.64 + .13) * .2 = .15

A Quick, Low-Tech Pareto Principle Approach

To recap what we’ve just learned, the probability that a base use case will
use an include use case is the sum of the probabilities of the scenarios of
which it is a part. The probability that a base use case will use an extend use
case is the sum of probabilities of scenarios of which it is a part times the
probability that the condition for extension is met. Now that we under-
stand how it works, maybe we can take a short cut and make some guessti-
mates. And, of course, if we don’t have operational profiles for the base use
cases, we’ll have to guesstimate anyway.

Let’s take what we’ve learned about include/extend use cases, re-apply
some of the Pareto Principle heuristics from the “Pareto Principle and
Guesstimates” section, and see if we can get some ballpark probabilities for
include/extend use cases as at least a starting guesstimate.

OPERATIONAL PROFILES: QUANTIFYING FREQUENCY OF USE OF USE CASES 101

Figure 3.18 illustrates a quick and dirty Pareto-based heuristic for guessti-
mating the probability that a base use case will actually use an
include/extend use case; a heuristic like this would be used in the absence
of empirical data or in the absence of an operational profile of the base use
case.

First, we guesstimate the probability that the base use case flow takes one
of the scenarios on which the inclusion/extension point lies; this is row 1,
2 and 3 of Figure 3.18. If there is just one scenario in the use case (row 1),
the probability is, of course, 1.0. If there is more than one scenario in the
use case, we ask which is more likely: that the inclusion/extension point
lies on one of the high traffic scenario paths (row 2) or not (row 3)? We
assign the probabilities of .8 and .2 for each of these events, respectively.

Second, we guesstimate the probability that if the inclusion/extension
point is reached it will actually be utilized. For include use cases, this is
easy: UML tells us that if they are encountered they are always utilized, so
probability = 1.0 (column 1). For extension points, we ask which is more
likely: that when the extension point is reached it will be used (column 2)
or not (column 3). We assign the probabilities of .8 and .2 to each of these
events, respectively.

That’s it. Quick and low tech. But if you don’t have any better data, it’s prob-
ably as safe a guesstimate as you can make. Simply find the cell that match-
es your need and use that probability as a ballpark starting place; let your
instincts take it from there to tweak as you feel is right.

102 CHAPTER 3

Figure 3.18 Pareto-based heuristic for guesstimating the probability that a base use case will actually use
an include/extend use case.

Concluding Thoughts About Use Case
Relationships

As you saw in the previous section, accounting for include and extend rela-
tionships can make what started out as a simple approach to operational
profiles quite a bit more complicated. It could, however, be worth the effort
to identify early in development common parts of the system—represent-
ed as include and extend use cases—that are shaping up as hot spots of
traffic in the system. The same idea is used in the profiling of code where
you are looking for components or subroutines that are utilized heavily by
other code. Such hot spots are good candidates for making highly perfor-
mant, easy to use, and reliable.

Use case generalizations are more straightforward to address in the opera-
tional profile: parents and children of a generalization relationship are
treated as regular use cases listing their frequency of use separately for
each. The only special issue is when the parent use case is an abstract use
case (i.e., one that is not fully specified and cannot be instantiated).

OPERATIONAL PROFILES: QUANTIFYING FREQUENCY OF USE OF USE CASES 103

��� �������� ��
	�
� �
� ��
�

����������� �	 �
����
�
�
������
�
��

���

���
� �� ����

������� ��������
 ��
	�
� �
� ��
�

����������� �	 �
����
�
�
������
�
��

���

���
� �� ���� �����

������� ��������
 ��
	�
� �
� ��
�

����������� �	 �
����
�
�
������
�
��

���

���
� �� ��� �����

�������
�
������
 �� ��
������ �����

������ ��
�

���

���
 �!
�� ����

������ ��
�

���

���
 Not �!
�� ����

� � � " �

�� � � " ��

�� � � " ��

� � �� " ��

�� � �� " �#$

�� � �� " ��#

� � �� " ��

�� � �� " ��#

�� � �� " ��$

Abstract use cases should be excluded from the operational profile or
receive a zero for frequency of use as was done in Figure 3.12 for use case
Place Order.

Working Smarter: Use Case Packages

In the section titled, “Working Smarter: Scenarios of a Use Case,” we looked
at the use of the operational profile of the scenarios of a single use case as
a tool for planning. In this section, we look at examples that illustrate uti-
lizing the operational profile of a package of use cases for planning.

Time-Boxing for a Package of Use Cases

We’ve already seen time boxing used as a strategy for deciding which sce-
narios of a use case should be covered in an inspection (see the “Time-
Boxing an Inspection” section). To reiterate, time-boxing is a top-down
planning strategy in which the duration of the task or project (that’s the
“top”) is fixed, forcing hard decisions to be made about what scope can be
delivered or tasks accomplished in the allotted time. One of the most com-
mon uses of time-boxing in testing will be to schedule the amount of time
spent on test design per use case. Here’s a simple example.

Next week, you are to start designing tests for the new sales order compo-
nent of Figure 3.11. You have one week to spend on the task. To get an idea
of how you want to spend your week, you construct the spreadsheet table
of Figure 3.19 using the operational profile of the sales order component
(refer to Figure 3.14).

To keep it simple, you assume that you have about 40 hours to spend on
test design, and then use the operational profile of the sales order compo-
nent to allocate those hours across the nine use cases of the component.
From doing this, you decide to spend a day on each of the four use cases
that account for about 81% of the traffic through the component. The last
day you’ll spend on the other five use cases, which account for 20% of the
traffic. Additionally, you decide to approach test design in the order of fre-
quency of use; that way, if time runs out, you have tackled the most critical
use cases first.

104 CHAPTER 3

Figure 3.19 Time-boxing the test design of use cases (hours rounded to nearest whole).

As you can see, applying an operational profile for a package of use cases
is really no different from using a profile of the scenarios that make up a
single use case. It is used to allocate effort, resources, or time based on the
relative frequency of use cases in the package.

Transitioning from High-Level to Low-Level
Planning

If it’s not obvious yet, the operational profile for a package of use cases and
the operational profile of the scenarios of each individual use case are
intended to work in concert with one another. The former works at the high
level, allocating time, effort, and resources across the use cases of a project
or iteration; the latter works at the low level, allocating each use case’s allot-
ment across the scenarios. The next example illustrates this transition from
high-level to low-level planning.

OPERATIONAL PROFILES: QUANTIFYING FREQUENCY OF USE OF USE CASES 105

Your project is setting up an automated regression test bed that will run a
smoke test after each build.5 The smoke test focuses on three key use cases,
each with four scenarios. Performance is a big part of your project, so the
smoke test simulates a load of 500 users logging on, in different ways, to
perform various tasks (the use cases and their scenarios). Login account
IDs for 500 “fake” users have been set up on the test bed; you have been
asked to decide how to allocate the 500 user login IDs across the use cases
and their scenarios.

Starting with the operational profile of the three use cases, you build a
spreadsheet table that allocates the total number of login IDs across the
three use cases (see Figure 3.20).

106 CHAPTER 3

Figure 3.20 Allocation of login IDs at the use case level. Arrows illustrate calculation of IDs allotted to use
case 1 (500 x .64=320).

Of the 500 login IDs, the profile calls for 320 going to use case 1, 100 to use
case 2, and 80 going to use case 3.

5 A smoke test is a relatively simple test—typically automated—that runs after each baseline build
as a sanity check that the baseline doesn’t “smoke” when run and is at least sound enough to war-
rant further attention (e.g., before going on for more thorough testing). Steve McConnell (1996)
provides more details on daily builds and smoke tests as a development best practice.

Figure 3.21 Allocation of login IDs to the use case level and then to the scenario level. Arrows illustrate cal-
culation of IDs allotted to use case 1 (500 x .64=320) and then the subsequent calculation of
what part of that allotment is to go to scenario 4 (320 x .04=13).

Air Bags and Hawaiian Shirts

There are some things you buy in life hoping to never actually use, air bags
for example. Use them once and the price paid is well worth the cost. But
then there is that Hawaiian shirt you bought while on vacation with the hula-
dancer in a grass skirt saying “Mele Kaliki Maka” (that’s “Merry Christmas” in

OPERATIONAL PROFILES: QUANTIFYING FREQUENCY OF USE OF USE CASES 107

Next, you extend the spreadsheet table to include the operational profile of
scenarios in each of the three use cases; this operational profile takes the
number of login IDs allotted to each use case (see Figure 3.20) and further
allocates them to the scenario level (see Figure 3.21). The result is a smoke
test that loads the system in a manner consistent with how you believe your
users will be using the system.

Hawaiian). True, you cut a handsome figure at the office Christmas party in
that shirt. But practically speaking, had you paused for a moment and
reflected on the number of opportunities in the course of a year that you
would actually wear that shirt, you probably would not have shelled out the
$80 you paid. Sometimes it pays to evaluate the cost of something in terms
of how frequently—or infrequently—you actually think it will be used.

You are reviewing the operational profile for a package of use cases your
project’s product manager has been working on with the customer and
mentally trying to estimate the effort required to implement each use case.
In doing this, it occurs to you that, in general, there is no reason why the
cost to implement a use case should go down just because it is infrequent-
ly used. A use case that is used once a year can cost just as much to imple-
ment as one that is used daily. You decide to try an experiment.

Working with nice round numbers, you do a rough estimate of the staff
days to implement each use case; for example, two developers for a month
= 40 staff days. Combining these estimates with the operational profile, you
build the spreadsheet table of Figure 3.22, which includes a column that
calculates the ratio of effort to percentage-point of use for each use case.
After some scrutiny of Figures 3.22 and 3.23, which plots a bar chart of this
ratio, you decide it’s time to talk with the product manager to determine if
some of these use cases—for example use case 11—are air bags (used infre-
quently, but well worth the cost) or Hawaiian shirts (used infrequently and
you paid how much?!).

108 CHAPTER 3

Figure 3.22 Evaluating ratio of effort to percentage point of use. Is use case 11 an “air bag” or “Hawaiian
shirt?”

Figure 3.23 Bar chart plotting ratio of effort to percentage-point of use from Figure 3.22.

Extending Operational Profiles to Address
Critical Use Cases

As noted in the previous section, your car’s air bag is one of those items in
life you actually hope to never use. If used at all, it’s used just once, and you
hope it’s reliable. Air bags are an example of functionality that doesn’t fit
well into the frequency of use model of reliability: the level of reliability we
require from an air bag is not in proportion to its frequency of use.

In the next section, you will see how to extend an operational profile to
address critical use cases that, although used infrequently, nevertheless
need an appropriate amount of development and test effort and resources
dedicated to them to ensure they are reliable.

What Does “Critical” Mean?

Project teams often say things like “That use case is critical” or “That’s a
mission-critical use case” or “Do we have a list of critical use cases for the
next release?”. That word—“critical”—has at least two very common mean-
ings. One common meaning of “critical use case” is that the success of a
project from a business standpoint is dependent on delivery of that use
case. Another meaning of “critical use case” is that severity of use case

OPERATIONAL PROFILES: QUANTIFYING FREQUENCY OF USE OF USE CASES 109

�����

�����

�����

����

����

����

����

���

�
�	

�
�	
�

�
�	

�
�	
�

�
�	

�
�	
�

�
�	

�
�	
�

�
�	

�
�	

�
�	

�
�	
�

�
�	

�
�	
�

�
�	

�
�	
�

�
�	

�
�	
�

�
�	

�
�	
�
�

�
�	

�
�	
��

�
��
�
��
�
�
�
�
�
��
�
	
�

�
�
�
�
�	
�
�
�

�
�

failure is high. An air bag is a critical feature in a car because the conse-
quence of it failing is high.

Sometimes it’s really not clear which—or if maybe both—of these two
meanings is intended. Wiegers, in describing scales for prioritizing require-
ments, uses as an example the scale: High, Medium, and Low, where High
is defined as “a mission-critical requirement; required for next release”
which can probably be interpreted as being critical in both ways.

Of these two meanings, this section will address “critical” as meaning that
the consequence of failure can be severe. But rather than use the word “crit-
ical” we’ll talk about severity of failure. In critical systems—safety-critical,
mission-critical, and business-critical—this is a common way to quantify
criticality: the higher the severity of failure, the more critical it is.6

It’s a Calculated Risk

Just as the term “critical” can have different meanings, the term “risk” gets
used in a lot of different ways. The type of risk we’ll be talking about is
quantified and used, for example, in talking about the reliability of safety
critical systems. It’s also the type of “risk” that the actuarial scientists use in
thinking about financial risks: for example, the financial risk an insurance
company runs when they issue flood insurance in a given geographical
area.

In this type of risk, the risk of an event is defined as the likelihood that the
event will actually happen multiplied by the expected severity of the event.
Likelihood is expressed in terms of frequency or a probability. If you have
an event that is catastrophic in impact, but rarely happens, it could be low
risk (dying from shock as a result of winning the lottery for example). This
product—likelihood times severity—is called risk exposure.

The terms “frequency” and “probability” can be a bit confusing to those of
us that are not statisticians. And even the statisticians like to have debates

110 CHAPTER 3

6 The other type of “critical”—really important from a business perspective—was addressed in
Chapter 1, “An Introduction to QFD: Driving Vision Vertically Through the Project,” on QFD where
critical equates to critical business drivers.

about their meanings and relationship (since about the eighteenth centu-
ry, in fact). The US Office of Hazardous Materials Safety talks about “fre-
quency” in terms of a measure of the rate at which events occur over time
(e.g., “crashes per year”) and in the examples we’ll see, that’s how our like-
lihood will be expressed. Just be aware that frequency and probability can
be, and are, used interchangeably.

So what’s all this about “events”…what does that have to do with use cases?
Well, each time your customer runs a use case, there is some chance that
they will encounter a defect in the product. That’s an event. What you’d like
to have is a way to quantify the relative risk of such events from use case to
use case so you can work smarter, planning to spend time making the riski-
er use cases more reliable. But before we get to that, let’s take an example
of calculating the risk of an event.

Hardware Widget Example

A manufacturing plant has a machine with two hardware widgets A and B.
When either one fails, production is shut down until they are replaced.
Hardware widget A is rated at about 1 failure in 5,000 hours of operation;
widget B is more reliable being rated at 1 failure in about 10,000 hours of
operation.

Which widget is the bigger risk to shutting down production? Your first
reaction might well be it’s the least reliable of the two, widget A. But, in fact,
we can’t tell yet because we don’t know what the cost of a failure is. Let’s say
the cost of the widgets themselves is negligible; the bulk of the cost of a fail-
ure is in having production shutdown. Widget A can be replaced pretty
quickly, and is estimated to affect production by about $6,000. Widget B, on
the other hand, requires significantly more time to replace due to its loca-
tion in the hardware, requiring the manufacturing machine to be partly
disassembled. The estimated impact to production when it fails is about
four times as long, or about $24,000.

Figure 3.24 illustrates the calculation of the risk of these two widgets failing.
The following formula is used to calculate risk exposure:

(Failures/Hours) × Cost of Failure = Risk Exposure

OPERATIONAL PROFILES: QUANTIFYING FREQUENCY OF USE OF USE CASES 111

Figure 3.24 Calculating the risk exposure of hardware widgets A and B. In this example, widget B, the more
reliable one, is actually the bigger risk.

The risk exposure in both cases is given in terms of dollars per hour and, as
it turns out, the more reliable component—hardware widget B—is actually
a bigger risk than hardware widget A because of the cost of failure. Widget
A at one failure in 5,000 hours of operation has a risk exposure of $1.20 per
hour compared with a risk exposure of $2.40 per hour for the operation of
widget B, based on one failure in 10,000 hours of operation.

Finally, each widget’s risk exposure represents some percent of the total risk
exposure ($1.2 + $2.4 = $3.60); that percentage is calculated for each widg-
et in the last column of Figure 3.24, labeled probability. This is the relative
probability of loss from failure that each widget represents.

Profiling Risk in Use Cases

Let’s take what we’ve learned from our hardware widgets and re-apply it to
use cases. Using our sales order example of Figure 3.11 and starting with
the frequency of use information from its operational profile (see the
Times per Day column in Figure 3.14), we build an operational profile that
takes into account the risk of each use case (see Figure 3.25).

112 CHAPTER 3

Figure 3.25 Sales order operational profile extended to cover risk.

The following sections will walk you through the key points of the opera-
tional profile of Figure 3.25, which has been extended to address use case
risk.

Frequency of Failure

Recall that in our hardware widget example we specified the frequency of
failure in terms of expected failures per hours of operation (e.g., one failure
in 10,000 hours of operation) something one would learn, for example,
through empirical tests run on batches of widgets. For use cases, we don’t
have an absolute number like that to work with. We are building a risk pro-
file that can be used very early in the release to help plan activities for
development and test. But what we can do is talk about the relative fre-
quency of failure from one use case to another.

The first column of Figure 3.25 records the estimated number of times a
day that each use case is run; it is the same information as from the opera-
tional profile illustrated in Figure 3.14. But rather than saying that use case
Arrange Payment is run 355 times a day, think of it like this: use case
Arrange Payment has 355 opportunities a day to fail. Request Catalog has
129 opportunities a day to fail. So Arrange Payment has over twice as many

OPERATIONAL PROFILES: QUANTIFYING FREQUENCY OF USE OF USE CASES 113

Arrange Payment

Place National Order

Enter Customer Data

Order Product

Request Catalog

Check Order Status

Place Local Order

Place International Order

Cancel Order

355

350

340

340

129

100

50

25

25

$10

$100

$100

$100

$10

$10

$100

$1,000

$100

$3,550

$35,000

$34,000

$34,000

$1,290

$1,000

$5,000

$25,000

$2,500

0.03

0.25

0.24

0.24

0.01

0.01

0.04

0.18

0.02

Number of
Opportunities

for Failure
Daily

$$ to
Resolve
Problem
(Order of

Magnitude)

Risk
Exposure

($$ per Hour) Probability

TOTAL

Frequency Severity Risk* =

Use Case

TOTAL 1714 $141,340 1.00

opportunities for failure as Request Catalog. In the extreme, a use case that
is never run will have no chance to fail.

So while we can’t estimate frequency of failure for a use case in absolute
terms as we did with the hardware widgets, we can say how many we expect
in relation to other use cases, and we do this by simply estimating the times
per day we expect each use case to be used. This is essentially the same
concept we’ve seen in the operational profiles previous to this, but restated
in such a way as to illustrate how it fits into the overall calculation of risk.

Severity

The severity of a use case failure may be hard to pin down quantitatively.
There are three factors that need to be considered. First, there is the matter
of the unit of measure for severity. Common units of measure for severity
are cost, lost time (e.g., system downtime), and for safety-critical systems,
deaths and/or injuries. Given any one of these units of measure—cost, lost
time, and so on—you have to also decide what it is that needs to be meas-
ured. For example, for cost, is it the cost to repair a failure, the cost of lost
revenue due to a failure, or perhaps both? What makes sense for one pack-
age of use cases may not make sense for another.

Use caution in arbitrarily adopting a scale of say, 1=low severity, 2=medium
severity, 3=high severity. Remember, the resulting profile will be used to
allocate time, effort and resources. If you plan on giving one use case three
times as much effort as another, make sure that it truly is three times more
severe in some absolute sense.

Next, as Musa et al. (1990) point out, the severity of failure depends a lot on
whose perspective you choose to measure it from. A defect that is relative-
ly inexpensive to correct from a development standpoint can be cata-
strophic to a customer, and vice versa.

Finally, there is the issue of actually attributing a number to the severity.
Keep in mind that the goal is to get relative values for a profile. So rather
than agonizing over whether the severity of the defect represents five ver-
sus six hours of down time, consider the suggestion of Musa et al. (1990) to
round off severity estimates to the nearest order of magnitude.

114 CHAPTER 3

Order of magnitude estimates are ones that are given in terms of factors
of 10:

100 = 1

101 = 10

102 = 100

103 = 1000

104 = 10,000

and so on

By their nature of separation, it’s often easier for a team to categorize things
into order of magnitude buckets. For example, what’s the average life of a
person? Rather than getting into debates about the numerous factors that
effect people’s longevity—health, lifestyle, country, even what century—it’s
pretty clear that it’s on an order of magnitude of 100 years; 10 is way too
small and 1000 is way too big.

My inclination is to use orders of magnitude in the same way I use the
Pareto Principle, as a heuristic to get a first cut at estimates, and then step
back and let gut level intuition tweak things a bit.

Example of Estimating Severity

The third column of Figure 3.25 specifies the severity of failures for each
use case of our sales order example. The unit of measure selected is an
order of magnitude estimate of dollars to correct problems when discov-
ered. Your reasoning for coming up with estimates of severity for this exam-
ple might go something like the following.7

OPERATIONAL PROFILES: QUANTIFYING FREQUENCY OF USE OF USE CASES 115

7 Again, keep in mind that this is an example. The cost to correct a problem may or may not be the
right unit of measure for your application.

Use cases, such as Arrange Payment, Request Catalog, and Check Order
Status, can typically be fixed online by a customer representative and are
estimated at an order of magnitude of ten dollars to correct. For example, a
customer orders a catalog, the system fails to issue request for catalog, and
the customer never gets it. The customer phones and complains and the
problem is fixed with the re-issue of a catalog.

You decide, however, that use cases that involve the shipment of goods
within the country—Place Local Order and Place National Order—are
more on the order of magnitude of one hundred dollars to fix. For example,
customer orders widget A, but system issues request for widget B.
Customer gets wrong widget and phones to complain. Fixing this involves
cost of labor, shipping, and insurance to have wrong widget picked up from
customer, shipped back to the warehouse, and re-stocked.

Problems with international orders, you decide, are even more expensive to
fix. They incur the same types of costs to fix as local and national orders—
only more expensive—plus tariffs going and coming, and so on. You esti-
mate use case Place International Order at an order of magnitude of a
thousand dollars to fix.

Finally, you note that several of the use cases—Enter Customer Data and
Order Product—are included in the generalization use case, Place Order,
of which the more critical Place Local, National, and International Order
use cases are children. As either of these included use cases could very well
play a role in bungling orders, you decide their severity is in line with the
place order use cases. Because the predominant use of these included use
cases is for local and national orders (400 hundred times daily) versus inter-
national orders (25 times daily), you conclude an order of magnitude esti-
mate of their average severity is one hundred dollars.

You reach a similar conclusion about Cancel Order, which, while not
included in Place Order, could, if it failed, result in orders being shipped
though actually cancelled. Cancel Order is also pegged at average severity
on an order of magnitude of one hundred dollars.

Risk Exposure and Probability

The next-to-last column of Figure 3.25 calculates the risk exposure for each
use case by taking the frequency of failure, stated in opportunities for fail-
ure per day, times severity, stated in dollars per failure. So, risk exposure will

116 CHAPTER 3

be measured in dollars per day. Risk exposure represents the risk in dollars
to run a use case for the day. It doesn’t mean that is how much money you
are necessarily losing; it is the potential loss you are exposed to—hence, the
term risk exposure—from running a use case. It’s just a way to compare the
risk of one use case to another.

The last column of Figure 3.25 calculates each use case’s percent of total
risk exposure; in a nutshell, it’s the relative probability of loss due to a use
case failure. This profile can be used just like the use case package opera-
tional profiles we’ve looked at earlier in the chapter; for example, it can be
used for top-down or bottom-up planning. In this case it is based on use
case risk rather than just frequency of use.

Plotting the Results

Let’s conclude by comparing the operational profile of the sales order
example with and without criticality of the use cases being taken into con-
sideration (see Figure 3.26).

OPERATIONAL PROFILES: QUANTIFYING FREQUENCY OF USE OF USE CASES 117

����

����

����

����

����

����

����

��
��
	

�
��

�
�	
�

��
��
�
�
��
��
	�
� �
��
��

�	
��
� �
��
��
�
��
�
��
�

�
��
��
��
��
��
�

�
��
��
��
�
��
��
�

�
��
��
�
��
��
 �
��
��

��
��
�
!�
��
� �
��
��

��
��
�
"	
��
�	
��
��
	�
� �
��
��

�
�	
��
� �
��
��

�
��
�
�
�
�
��
��
	

�
�
�

�

�
��
��
�
�
�
�
�
��

�
��
�

#������ ����������
 ��	�������

#��� ����������
 ��	�������

Figure 3.26 Bar chart of sales order example of Figure 3.11 comparing operational profile of Figure 3.14,
without use case criticality, and Figure 3.25, with criticality.

As Figure 3.26 illustrates, taking criticality of the use cases into considera-
tion in the operational profile can change the lay of the land. Use cases
that, while frequently used, are low in criticality, can fall dramatically in rel-
ative ranking (e.g., Arrange Payment), and use cases that are less frequent-
ly used but are critical can rise in ranking (e.g., Place International Order).

What Have You Got to Lose?

Adding information about the criticality of use cases to your operational
profile will, of course, require more effort. Deciding whether or not it’s
worth it depends on a number of things.

If your business has elements that are safety-critical, mission-critical, busi-
ness-critical, and so on, you probably already spend time thinking about
how things fail and the cost of failures, so extending the operational profile
is probably not that big a jump for you.

On the other hand, even if you deal in critical systems, if the cost of all your
failures is astronomical or if the cost of all your failures are on the same
order of magnitude, including severity in the profile might not buy you that
much; profiling by frequency of use might be all you need.

And, for some businesses, making the connection between things that fail
and their associated cost may be hard to establish with much certainty. In
the end, it really comes down to asking, “What do I have to lose when a use
case fails, can I quantify it and will that help me in planning?”

Chapter Review

In this chapter, we’ve talked about operational profiles, a quantitative
description of frequency of use of use cases and scenario. Let’s review:

• Operational profiles allow an engineering team to allocate
time, effort, and resources in proportion to the traffic use
cases and scenarios are expected to receive. In doing so, the
engineering team focuses their efforts on those use cases and
scenarios most likely to have defects in operational use by the

118 CHAPTER 3

customer. The result is a good return on investment in relia-
bility per development and test dollar spent.

• Decision graphs are a common technique for describing
operational profiles and are well suited for describing the
operational profile of scenarios that make up a use case.

• A simple, straightforward technique for describing the opera-
tional profile of a package of use cases is to estimate the num-
ber of times each use case is expected to be used in some unit
of time, say daily, and then calculate the relative frequency of
each. UML generalize, include, and extend use cases can be
accommodated in this approach, though include and extend
make it a tad more complicated.

• In building an operational profile without empirical results
from the field or usability studies, the probabilities you use in
your use case decision tree will likely be “guesstimates.” The
Pareto Principle can often be used to help you get over the
“analysis paralysis” of agonizing over probabilities. With an
initial guesstimate in place, you can then step back and let
your gut instinct help you tweak the numbers.

• Some use cases don’t fit well into the frequency of use model
of reliability: the level of reliability we require from a use case
that controls an air bag is not proportionate to its frequency
of use. Use case criticality can be addressed by extending the
operational profile to include the risk exposure of each use
case: the likelihood of use case failure multiplied by the
expected severity.

We have talked about reliability a lot in this chapter, but have not really
defined it. In the next chapter, we’ll look at a concrete way to talk about
reliability allowing us to measure it, set goals in terms of it, and track it in
testing.

OPERATIONAL PROFILES: QUANTIFYING FREQUENCY OF USE OF USE CASES 119

This page intentionally left blank

Your product has been in final system test for days; or has it been weeks?
Surely it must be time to stop testing and release it? It’s the moment of deci-
sion, and you realize: Damned if you do; Damned if you don’t. Release it too
early, and you incur the wrath of customers inflicted with a buggy product
and the high cost of fixing and testing defects released to production. Hold
the product in testing, and you incur the wrath of marketing as they remind
you of the revenue that is being lost on top of the cost of too much testing.
There is a sweet spot in testing, a point that strikes that perfect balance
between releasing the product too early and releasing the product too late.1

But how do you know you are close to that sweet spot?

The second idea Software Reliability Engineering (SRE) brings to use case
development is a quantitative way to talk about reliability, providing a
sound basis for determining when a product’s reliability goal has been
reached, testing can terminate, and the product can be released.

121

4

Reliability and Knowing
When to Stop Testing

1 Although examples from this chapter are couched in terms of final system test, in the Unified
Software Development Process the question of whether to stop or continue testing for and fixing
defects is one that is pertinent throughout the construction and transition phase during: Testing
of increments of the system at the end of each iteration to determine if moving to the next itera-
tion is warranted; final system test at the end of the construction phase to determine if a product
is reliable enough for beta test; beta test during transition phase to determine if the system is ready
for full commercial release.

In this chapter, we’ll do the following:

• Talk about reliability, how to define it, measure it, set goals in
terms of it, and track it in the testing of use case-driven devel-
opment projects.

• Look at a spreadsheet-based dashboard that lets you track
three key factors in knowing whether it’s time to stop testing
and release a product: failure intensity, open defects, and test
coverage as per the operational profile. This dashboard pro-
vides at-a-glance monitoring of reliability growth across a
large package of use cases.

• Learn how to measure the effectiveness of a use case-driven
development process in terms of defect detection and
removal, touted by some as the single most important metric
for improving the capability of a process to produce quality
products. And we’ll look at how to use this measure to deter-
mine if your reliability goals can be raised or lowered for
future releases.

Let’s begin by defining what we mean by reliability.

What Is “Reliability”?

Use case-driven development and SRE are a natural match, both being
usage-driven styles of product development. What SRE brings to the party
is a discipline for focusing time, effort, and resources on use cases in pro-
portion to their estimated frequency of use, or criticality, to maximize reli-
ability while minimizing development costs. But what is reliability? We
spent a lot of time in the last chapter talking about the operational profile
as a tool to work smart to achieve reliability, but we have never actually said
what reliability is. Software reliability is defined as:

The probability of failure-free operation for a specified length of
time in a specified environment.

122 CHAPTER 4

Though short, this definition has a lot packed into it that doesn’t necessar-
ily jump out at you on first read. There are two main themes of which to
take notice.

Software Reliability is User-Centric and Dynamic

First, software reliability is defined from the perspective of a user using a
system in operation. It is a user-centric, dynamic definition of reliability, as
opposed to, say, faults per lines of code, which is a developer-centric, stat-
ic measure.

Consider the phrase “specified environment.” This includes the hardware,
its configuration, and the user profile (e.g., whether the user is an expert
user, novice, and so on). User profile is important because a system
designed for use by an expert could well be unreliable in the hands of a
novice. The whole “specified environment” idea is only pertinent because
you are qualifying expectations of reliability in terms of a system being
operated by a user.

How about the phrase “failure-free” operation; what does that imply? A fail-
ure occurs when a system in operation encounters a defect or fault, caus-
ing incorrect results or behavior. A defect or fault is a static concept—it’s
just there, in the code—but a failure is something that can only happen
when the system is in operation. So again, this is a dynamic concept imply-
ing a system in operation.

A dynamic, user-centric definition of reliability is more than an academic
issue. This part of the definition is at the heart of SRE’s ability to deliver high
reliability per development and test dollar spent. A use case with lots of
defects or faults in its underlying code can seem reliable if the user spends
so little time running it that none of the many bugs are found. Conversely,
a use case that has few defects or faults in its underlying code can seem
unreliable if the user spends so much time running it that they find all
those few bugs in operation. This is the concept of perceived reliability; it is
the reliability the user experiences as opposed to a reliability measure in
terms of, say, defect density.

RELIABILITY AND KNOWING WHEN TO STOP TESTING 123

Software Reliability Is Quantifiable

The second key theme in the definition of reliability is that it is quantifiable;
the key phrase here is “…probability of failure-free operation for a specified
length of time …”

In the last chapter, we saw an example of calculating the risk exposure that
two hypothetical hardware widgets posed to a manufacturing machine of
which they were a part: when either failed, production was shut down until
it was replaced. As part of the calculation of risk, we said that one widget
was of a type expected to fail once in 5,000 hours of operation and the other
once in 10,000 hours of operation. These were statements about the
expected failure intensity of the widgets. Failure intensity is the number of
failures per some unit time and is probably the most common method of
specifying and tracking software reliability.

But technically speaking, to answer the question: “What is the probability
of failure-free operation for a specified length of time?” we need the formu-
la shown in Equation 4.1 (typically given with Greek letters, which unfortu-
nately makes it “look” more complicated than it actually is) called the expo-
nential failure law:

R(τ) = e
-λτ

Equation 4.1 Reliability is the probability of failure-free operation for a specified length of time, which is
given by this formula, called the exponential failure law.

Don’t worry about committing this formula to memory: You’ll see how to
use it as part of a simple spreadsheet formula later in the chapter.

Equation 4.1 reads like: R(τ) is the probability that a system will run for
specified time, τ, given a constant failure intensity of λ, where e is the base
of the natural logarithm (e = 2.7182818284…).

Constant failure rate just means that you aren’t fixing bugs or adding new
features, both of which would affect the failure rate. A constant failure rate
is basically what you have once a system is released for commercial use: the
failure rate isn’t going to get better or worse; it’s constant because you are

124 CHAPTER 4

done working on the system. It is, therefore, a good indicator of what life
with the system will be like for your customer.2

What does this equation really mean? Well, it is capturing an intuitive
aspect of reliability that failure intensity alone doesn’t describe. When you
read that a hardware widget is expected to fail once in 5,000 hours of oper-
ation—that’s the failure intensity—a question that may well pop into your
mind is “Right, but doesn’t the likelihood of failure increase the closer to
5,000 hours of operation you get?” And the answer is yes, and that is exact-
ly what the exponential failure law of Equation 4.1 is describing.

Equation 4.2 provides an alternate way to re-write this equation that will
help us see this; we simply re-write the equation without a negative
exponent:

R(τ) = 1 / e
λτ

Equation 4.2 Alternate version of Equation 4.1 without a negative exponent.

Now let’s reconsider that question: Given a widget is expected to fail once
in 5,000 hours (that’s the failure intensity, i.e., λ=1/5000) isn’t it more likely
to fail later (say where τ = 5000) than sooner (say where τ = 1)? Looking at
Equation 4.2, we see that τ is in the denominator, so the bigger τ is, the
smaller the probability R(τ) that the widget will actually run that long. The
smaller τ is, the bigger the probability it will be able to run that long.

So, technically speaking, Equation 4.1 is the “official” definition of reliabil-
ity per se, as it is what is needed to calculate the probability of failure-free
operation for a specified length of time. But the main component of
Equation 4.1 is failure intensity, and failure intensity is the bit that is most
commonly used in setting and tracking software reliability goals.

RELIABILITY AND KNOWING WHEN TO STOP TESTING 125

2 If you add functionality or fix bugs once a system is released, it is, technically speaking, a new ver-
sion of the system with a new failure rate.

Reliability: Software Versus Hardware

Finally, if it’s not already obvious, it’s important to point out there are dis-
tinctions between hardware reliability and software reliability. When we
talk about hardware widgets with expected lives of 5,000 or 10,000 hours,
the source of failure is assumed to be from some part of the widget wearing
out from physical use. But software does not wear out per se, leading some
to question whether or not it makes sense to apply statistical models, such
as the exponential failure law that originated with hardware reliability, to
software (Davis 1993).

But the software reliability engineering community counters that though
the source of failures is different for software—it doesn’t wear out—
statistical models are nevertheless valid for describing what we experience
with software: the longer you run software, the higher the probability you’ll
eventually use it in an untested manner and find a latent defect that results
in a failure.

Resolution of these (sometimes theoretical) views notwithstanding, the
discipline of software reliability engineering has plenty of ideas I think you
will find have practical application to use case development: a user-centric,
dynamic, and quantifiable view of reliability. In the next section, you will
get a closer look at what is virtually the heart of this view of reliability—
failure intensity—and learn how to apply it to your projects.

Failure Intensity

Having a quantifiable definition of reliability, such as failure intensity, is the
key to being able to measure and track reliability during testing as a means
of helping decide if you have reached that sweet spot in testing—not too
early, not too late—when it is time to release your product. In this section,
you will learn:

• How to “visualize” failure intensity with what is called a relia-
bility growth curve.

• About units of measure for failure intensity and what makes
sense for your projects.

126 CHAPTER 4

• How reliability goals are set in terms of failure intensity, called
a failure intensity objective.

• Ways of determining the right failure intensity objective for
your projects.

Visualizing Failure Intensity with a Reliability
Growth Curve

A good way to visualize how failure intensity works as a decision aid for
when to stop testing is to look at a run chart of failure intensity through
time. Figure 4.1 shows a run chart of failure intensity for a large product
over a period of about three months from the start of system test to end, at
which time the product was released.

RELIABILITY AND KNOWING WHEN TO STOP TESTING 127

���

���

���

���

���

���

���

���

�
�
�
�
��
�
�
�
��
�
��
	

�
�
�
�
	
��
�

�
�

�����	 �
���
� �
����	 ���������

Figure 4.1 A reliability growth curve is a run chart of a system’s failure intensity through time.

Each point on the run chart in Figure 4.1 calculates the failure intensity to
that point in testing (date of measure is provided on X-axis). Failure inten-
sity (Y-axis) is calculated as the number of failures of a specified severity per
unit of time; in Figure 4.1, it is severe defects per tester day.3 Sticking with

3 Tester days is a measure of testing effort, like staff days, not calendar time. For example, two
testers working for three days = six tester days.

failures of a specified severity is important. As testing proceeds, it is quite
possible that the total number of “failures” doesn’t necessarily drop signif-
icantly; rather, it’s the mix of severity types that is changing. Early in testing,
the mix will contain a high percentage of severe failures. Toward the end of
testing, the percent of severe failures will drop (hopefully) but the number
of minor failures reported could very well increase such that the total count
is constant.

Run charts of failure intensity, such as that of Figure 4.1, are commonly
called reliability growth curves. One objection I sometimes get when I show
a team a reliability growth curve like that of Figure 4.1, say in a project post-
mortem, is that it seems counterintuitive for the trend line to go down as an
indicator that reliability is increasing. A related measure of reliability that is
often used in hardware, Mean Time To Failure (MTTF), is the inverse of fail-
ure intensity:

MTTF = 1 / Failure Intensity

And Failure Intensity = 1 / MTTF

If you would prefer to see a graph trend line that goes up, try plotting
MTTF.4

Selecting a Unit of Measure for Failure Intensity

Failure intensity is a measure of failures per unit of time. What you use for
a unit of time depends on what makes sense for your product and what you
can measure in a practical way. Musa et al. (1990) identifies execution
time—the amount of time the CPU is actually executing instructions—as
the preferred unit of measure for best results, but practically speaking, this
is difficult for the vast majority of testing organizations to measure. For
some applications, it might even make sense to use a non-time-based
measure, for example, failures per number of transactions.

128 CHAPTER 4

4 Another measure used in reliability is Mean Time Between Failure (MTBF). It is defined as MTBF
= MTTF + MTTR, where MTTF is mean time to failure and MTTR is the mean time to repair a sys-
tem once it has failed. The two terms are sometimes used interchangeably where repair time is
negligible or not relevant.

For many testing groups, the easiest thing to measure failures against is
testing effort because that is something they are already accustomed to
tracking for budget accounting. So, for example, three testers running sep-
arate testing efforts for a day would be three tester days of effort. Some care,
of course, needs to be taken to account for the actual amount of time spent
testing as opposed to attending staff meetings, setting up of hardware, and
so on. As previously noted, the run chart of Figure 4.1 was created using
failure intensity based on testing effort (i.e., tester days).

Setting a Failure Intensity Objective

Having a quantifiable definition of reliability, such as failure intensity,
allows us to not only measure and track reliability during testing but also
set quality goals in terms of that definition. This is done by setting a failure
intensity objective. In Figure 4.2, the dotted line illustrates a failure intensi-
ty objective of one severe defect per tester day as the project’s goal for reli-
ability. In this case, the team’s goal was to get under this threshold, and the
product actually released with a failure intensity of about .80 severe defects
per tester day.

Remember, tester day is a measure of work, not elapsed time. Some testing
groups prefer to work in terms of tester hours, which has the advantage of
not being ambiguous as to how many hours a tester day represents.

RELIABILITY AND KNOWING WHEN TO STOP TESTING 129

���

���

���

���

���

���

���

���

�
�
�
�
��
�
�
�
��
�
��
	

�
�
�
�
	
��
�

�
�

�����	 �
���
� �
����	 ���������

Figure 4.2 Failure intensity objective set at one severe defect per tester day.

The reliability growth curve is not always as clean as that shown in Figure
4.2. More often than not, in the messy world of real life development and
testing, you will find curves that look more like that of Figure 4.3, where
reliability actually gets worse at points (humps in the curve) and seems to
stubbornly refuse to converge on your stated failure intensity objective as
the scheduled release date looms near. The product whose reliability
growth curve is shown in Figure 4.3 was released with failure intensity just
under 2.5 severe defects per tester day (failure intensity objective was 1.0 as
indicated by arrow), i.e., schedule pressure forced release of the product
before the reliability goal was met.

130 CHAPTER 4

���

���

���

���

���

���

���

	��

���

�
�
�
�
��
�
�
�
��
�
��
	

�
�
�
�
	
��
�

�
�

� �� 	�� 	�� ���

���������� ��	���
��	

Figure 4.3 Reliability growth curves are not always neat “curves” converging on your failure intensity
objective.

Figure 4.3 also illustrates the plotting of failure intensity where cumulative
time (here tester days) is used for the X-axis rather than calendar time on
the X-axis as in Figure 4.2. Which you use is a matter of taste. I like to see
calendar time on the X-axis because the spacing between points can some-
times tell a story of their own (e.g., when IT decides to upgrade build
servers in the middle of the project shutting down development and test-
ing for two weeks. This will show up on the run chart as a glaring gap
between points, a reminder to never let them do that again). The danger of
using calendar time on the X-axis is that it can confuse you into thinking
failure intensity is in terms of calendar time.

But What’s the Right Failure Intensity Objective?

In Figure 4.2, we saw an example of a project where the failure intensity
objective was set for one severe defect per staff-day of testing, as illustrat-
ed by the dotted line. But how do you know what is the right failure rate to
use as your objective? There are of course lots of factors that play into this.

For example, who are your customers, and what do they want in terms of
reliability? Depending on where your product is in the technology adoption
life cycle (Moore 1991) your customer’s tolerance for unreliable products—
or lack thereof—will change. New products often have customers that are
innovators and early adopters and may be more concerned with early
availability and new features than having to work around an occasional
crash or two. On the other hand, mature products often have customers
that demand rock-solid reliability.

In the following sections, we’ll look at three ideas for helping you set failure
intensity objectives. We’ll look at a couple of high-tech approaches for
identifying failure intensity objectives for individual use cases and will then
conclude with a low-tech approach for setting a failure intensity objective
for a whole component or whole product; it may be a good 20/80 approach
for you to use delivering 80% of the benefit for 20% of the effort.

Setting Failure Intensity Objectives Based on Severity of
Failures

A way to set failure intensity objectives for each individual use case—or all
use cases associated with a given component—is to derive them based on
an analysis of severity of failures. In this approach, we start with what is
bearable in terms of failures—say, cost—then work backwards to deter-
mine the corresponding failure intensity.

In the previous chapter, we looked at profiling a package of use cases where
the risk exposure of each use case was taken into account. Figure 3.25 illus-
trated the calculation of the risk exposure for each use case of the sales
order component by taking the frequency of failure, stated in opportunities
for failure per day, times severity, stated in dollars to resolve per failure. Risk
exposure was measured in dollars per day and represents the risk in dollars
to run a use case for the day; we calculated risk exposure for the entire use

RELIABILITY AND KNOWING WHEN TO STOP TESTING 131

case package at $141,340 daily. Remember, that doesn’t mean that is how
much money you are necessarily losing each day; it is the potential loss you
are exposed to from running the package of use cases. It’s the loss you
would incur daily if every use case run resulted in a severe failure.

We know that we can’t afford to lose $141,340 a day due to failures in our
sales order system; in terms of failure intensity objectives, that just means
that a severe failure on 100% of use case runs is not acceptable. But what
amount of money are we willing to lose to run our sales order system? Musa
et al. (1990) provide examples of calculating the financial cost of a given
failure intensity objective, but the calculation can also be done the other
way (i.e., starting with what is financially a bearable cost for support of fail-
ures and then working backwards to determine the corresponding failure
intensity).

While this is a difficult way for us to think about our products (no one likes
to admit their system is imperfect) it is the approach you need to take in
order to set failure intensity objectives based on the severity of failures.
Unrealistic answers (e.g., “How about a penny a day?”) will result in relia-
bility goals that you will pay for dearly trying to achieve in terms of devel-
opment and testing.

To keep it simple, let’s say that you are willing to lose $1,000 daily in support
of failures in our sales order system. That figure—$1,000 a day—is about
seven tenths of a percent (.7%) of the total risk exposure of $141,340.
Translated into failure intensity, it means that you are willing to live with
seven tenths of a percent of the use case runs resulting in a severe failure.
With this, you are now able to construct the spreadsheet table shown in
Figure 4.4; the information on opportunities for failure a day and cost to
resolve each failure comes from the profile in Figure 3.25.

Column F—Failure Intensity Objective—simply calculates the upper
bound on the number of times a day we are willing to have each use case
fail in a severe way. Column J—$$ to Resolve (per Day)—calculates the
subsequent daily cost of fixing those failures, with a bottom-line total of
$1,000 daily for the package of use cases.

So, to summarize, in this approach we start with what is financially a bear-
able cost for support of failures, then work backwards to determine the cor-
responding failure intensity.

132 CHAPTER 4

Figure 4.4 Spreadsheet to calculate failure intensity objectives per use case based on failure severity.

Setting Failure Intensity Objective Using the
Exponential Failure Law

Failure intensity and its inverse Mean Time To Failure (MTTF) are measures
of the average behavior of systems. When we say a widget is expected to fail
once in 3 years (i.e., has a MTTF of 3 years) what we are really saying is that
widgets of that type on average will last for 3 years; some more, some less.
The name itself tells us that: Mean Time To Failure (i.e., the average time to
failure).

Sometimes, statements about average behavior are not good enough and
we need to say something stronger about our requirements for reliability.
Let’s take an example from the world of product warranties. Let’s say you
manufacture and sell widgets that come with a three-year warranty. You
have done an analysis of what it costs to do warranty repairs on failed widg-
ets and have determined that you need to have 75 percent of the widgets
outlive the three-year warranty; otherwise, repair costs of failed widgets
still under warranty start eating into profits. What MTTF do your widgets
need to have to ensure that 75 percent will run longer than the three-year
warranty?

RELIABILITY AND KNOWING WHEN TO STOP TESTING 133

For this type of problem, you need to return to the exponential failure law
(refer to Equation 4.1) and rewrite the equation so that you can solve for the
failure intensity λ (see Equation 4.3).

λ = ln (1 / R(τ)) / τ

Equation 4.3 Exponential failure law re-written to solution for failure intensity.

Interpreting Equation 4.3 in terms of our widget warranty problem, it reads:
The failure intensity, λ, of our widgets needs to equal the natural logarithm
(“ln”) of one over the desired percent of widgets we need to have survive
the warranty, R(τ), divided by the length of time of the warranty, τ.

You probably aren’t going to want to have to remember that formula or cal-
culate it by hand; that’s why we have spreadsheets! The spreadsheet in
Figure 4.5 shows how to implement Equation 4.3 and computes the target
failure intensity and corresponding inverse MTTF for widgets designed
such that 75% will outlive a three-year warranty.

134 CHAPTER 4

Figure 4.5 Calculating failure intensity objective for widgets with a three-year warranty based on the need
to have 75 percent survive the warranty period.“LN” is the natural logarithm function in Excel.

What the spreadsheet in Figure 4.5 is telling us is that for a type of widget to
reliably (75% of the time) outlast its warranty of three years, it has to be
designed with a failure intensity of one failure in 10 years, i.e., a MTTF of 10
years. You can see what is going on here: Because failure intensity and
MTTF are averages, the exponential failure law tells us we have to boost the
“ruggedness” of the widgets such that their average behavior returns our
required above-average result of 75% reliability. Simply put, it takes a widg-
et designed for an average life of 10 years to be 75% reliable for three years.

The same principle works with use cases. By their nature, use cases take
time to run. Some span seconds, some minutes, and some hours or longer,
their duration a function of granularity, but more so of the application
domain. In the development of systems to help geologists and geophysi-
cists find oil and gas reservoirs, it is not uncommon to have a use case in
which a single step corresponds to behind the scenes processing (which
the user does not see) of large amounts of seismic data, or the simulation
of the movement of fluids in a reservoir deep in the earth, both quite often
measured in hours.

Let’s take the widget warranty example and reapply it to use cases. Imagine
a use case called Log Call that is part of a police station’s 911 PBX system. A
typical police station that buys such a system usually runs from 1 to 10 ter-
minals each staffed with an operator. When a call comes in, the operator
records the details of the call: name, location, nature of emergency, and so
on. Based on analysis of peak call volumes, the reliability goal for the Log
Call use case is that at least 80 percent of the deployed PBX terminals
should be able to take a 30-minute call without failure. If a failure occurs on
a given terminal while running the Log Call use case, the operator can then
transfer the call to another terminal (another use case) with minimal wait
time resulting for the caller. What then is the failure intensity objective you
should use in developing and testing the Log Call use case? The spread-
sheet in Figure 4.6 shows the calculation.

RELIABILITY AND KNOWING WHEN TO STOP TESTING 135

Figure 4.6 Calculating the failure intensity objective for the PBX’s Log Call use case.

The spreadsheet in Figure 4.6 tells you that during development of the Log
Call use case you will need to continue testing and fixing defects that result
in severe failures until the observed failure rate is at or less than one severe
failure per 2.24 hours of use case run time, or .45 severe failures per hour.

One advantage to this approach is that the MTTF number it calculates
holds some useful information about how many tests and the test time a
use case may require to demonstrate the reliability goal has been met.
Assume for a moment that the implemented Log Call use case was defect
free; hence, failure free. How many tests would it take to simply demon-
strate that Log Call was capable of running 2.24 hours without a failure?
You’d need enough tests to stretch out the runtime to 2.24 hours (running
one test over and over doesn’t count). So looking at the MTTF from a test-
ing standpoint, it provides a minimum amount of time you need to test the
use case if you really want to demonstrate the use case’s reliability is at the
80% level.

But this also points out a key limitation of testing as a way to demonstrate
reliability. Storey (1996) points out in his discussion of reliability assess-
ment that some systems in the safety-critical arena have reliability goals so
high (e.g., one failure in 100,000 years) that the use of testing to demon-
strate reliability is for practical purposes impossible.

Low-Tech Approach

Many, if not most, software development organizations may not be ready
to try to set Failure Intensity Objectives in terms of analysis of severity of
failures or by use of the exponential failure law. Here’s a simple low-tech
approach you might find useful for setting failure intensity objectives for
whole components or even whole products; it may be a good 80/20 solu-
tion providing a lot of bang for the buck.

Think back to a project that you and your team remember as being suc-
cessful and that you believe was well received by the customer in terms of
reliability. Do a little project archaeology and find out the total number of
defects of a specified severity that were found during system test. Divide
that number by the amount of time that was expended during testing to
find those defects. Use execution time, staff time running tests, or even DB
transactions or orders processed; whatever unit of measure works best for
your failure intensity. That should give you a ballpark candidate failure
intensity objective.

Here’s an example. Figure 4.7 shows a spreadsheet constructed from the
defect tracking database and test reports of a project as part of its project
postmortem. For this project, the cumulative number of severe defects

136 CHAPTER 4

found was 582, with 375 staff days expended on testing, for an overall fail-
ure intensity of 582 / 375 = 1.55 severe defects per tester day.

RELIABILITY AND KNOWING WHEN TO STOP TESTING 137

Figure 4.7 Spreadsheet calculating failure intensity for project as a whole based on information from defect
tracking tool and testing reports. This product released with a cumulative failure intensity of 1.55
severe failures per tester day.

Besides being simple, this approach has another benefit. One complication
that most testing organizations are likely to face is the correlation between
testing and customer use (i.e., how does some unit of time spent in testing
relate to the same unit of time in the field). Chances are, your product test-
ing is not going to be directly equivalent to the use the product will experi-
ence in the field; it will either be more rigorous (hopefully) or less rigorous,
but probably not exactly the same. In either case—more rigorous or less—
there will be a question of how failure intensities in test compare to those
that users will experience. This approach of working from some past suc-
cessful project has the benefit of giving you a failure intensity objective that
already correlates well with the use of a happy customer.

In the final analysis, arriving at a failure intensity objective that is right for
your line of business, your products, and your customers may involve some
trial and error. At the end of this chapter we’ll look at a metric to help meas-
ure the success of a testing process’ defect removal. By tracking failure
intensities during testing, followed by analysis of defect removal metrics
after release, you should be able to determine whether you can raise, or

need to lower, failure intensity objectives. We’ll actually revisit the release of
Figure 4.7 and determine whether or not a failure intensity of 1.55 severe
defects per tester day was indicative of a good release.

The Swamp Report

Deciding it’s time to stop testing is one of those things that is easier to get
wrong than right. There are ample opportunities to either stop too early or
test too long. Finding that sweet spot in final system test that strikes that
perfect balance between releasing the product too early and releasing the
product too late is by comparison much more difficult.

Having a quantifiable definition of reliability, such as failure intensity, is the
key to measuring and tracking reliability during testing as a means of help-
ing decide when to stop testing. There are, however, two other factors that
need to be tracked, in conjunction with failure intensity, that play into the
decision of when to stop testing. The first is the number of known, open
defects. An assumption of software reliability engineering is that known,
open (unresolved) defects are fixed at the end of each iteration of testing,
and a new version of the software is used for the next testing iteration. In
my experience, fixing all known defects before proceeding to the next iter-
ation of test is not a practice that one can always count on. Of the severe
defects that will eventually get fixed before release, some portion typically
goes unresolved for several iterations of testing, how many actually get
fixed being a function of their number and difficulty to resolve. So the capa-
bility to measure and track the number of open, unresolved defects
becomes a key to making the decision to stop testing.

A second key assumption of software reliability engineering is that testing
is being carried out as per the operational profile. For example, if we are
testing to the risk profile of Figure 3.25, we would expect Place National
Order use case to receive 25% of the budgeted test effort and 1% to be for
the Request Catalog use case. Tracking to see that you are actually meeting
this planned test coverage is part of the decision making that goes into
knowing when it’s time to stop testing.

In this section, we look at a spreadsheet-based dashboard that lets you
track these three key factors—failure intensity, open defects, and test cov-
erage as per the operational profile—for a large package of use cases. I have

138 CHAPTER 4

used variations of this dashboard for years as a tool for helping project
teams and cross-company, multi-project program teams decide when to
release a product. This dashboard was created to provide at-a-glance mon-
itoring of reliability growth across a large number of “pieces” that form a
whole (use cases of a component, components of a product, whole prod-
ucts that are part of a program), where the pieces all need to be reliable for
the whole to ship. I call this dashboard the “Swamp Report” after the anal-
ogy of draining a swamp that is sometimes used to describe the test and fix
activities of system test leading up to product release.

Dashboard Layout

Before looking at how to use and read the dashboard, let’s review the vari-
ous parts that make it up. All examples will be given in terms of hours as the
unit of measure: planned hours of test as per the operational profile, actu-
al hours of test, and failures per hour.

The dashboard is based on a bar chart with use cases across the bottom.
Each use case has a horizontal bar showing the number of staff hours of
testing planned for the iteration as spelled out by the operational profile.
Each use case also has a vertical bar showing the actual hours expended
during the iteration. If actual expenditure of test hours equals plan, the ver-
tical bar touches the horizontal bar (see Figure 4.8).

Both the horizontal and vertical bar use the left-hand scale of the dash-
board marked Hours of Test (also marked with # of Must Fix Defects; we’ll
get to this soon).

Each use case also has a vertical bar that indicates the failure intensity that
was experienced during the test iteration, and a line that indicates the tar-
get failure intensity objective (see Figure 4.9). When the vertical bar drops
to or below the line, that use case has reached its failure intensity objective.
These two indicators share the right-hand scale marked FI (Failure
Intensity) and FIO (Failure Intensity Objective). Each use case can have a
different failure intensity objective; however, in Figure 4.9, all use cases are
shown with the same failure intensity objective, resulting in a straight, hor-
izontal line spanning the dashboard.

RELIABILITY AND KNOWING WHEN TO STOP TESTING 139

Figure 4.8 Horizontal bar indicates planned test hours per use case as per the operational profile. Vertical
bar shows actual expenditure. Both use left-hand scale.

140 CHAPTER 4

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
	

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��

�

�

��

��

��

�

�

�

�
�
�
�
�
�
�
�
�
�
�

	
�

�
�
�
�
�
�
�
�
�

�
��
�
�
��
�
��

����

����

��
�

����

��
�

��	�

����

����

����

����

����

�
��

�
�
�
�
�

������� ����� �� ����

���������� ������

������ ����� �� ����

���������� ������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
	

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��

�

�

��

��

��

�

�

�

�
�
�
�
�
�
�
�
�
�
�

	
�

�
�
�
�
�
�
�
�
�

�
��
�
�
��
�
��

����

����

��
�

����

��
�

��	�

����

����

����

����

����

�
��

�
�
�
�
�

������� ���������

����������� ������

������� ��������� !"����#�

����������� ������

Figure 4.9 Horizontal line indicates target failure intensity objective. Vertical bar shows actual failure inten-
sity experienced during test iteration. Both use right-hand scale.

Finally, the dashboard uses an area graph (looks like mountains) to show
the number of defects that remain to be fixed before the product can be
released; this is “The Swamp,” and it looks good color-coded in algae green
for effect! The number of defects to be fixed is tracked on the left-hand
scale (Figure 4.10).

RELIABILITY AND KNOWING WHEN TO STOP TESTING 141

�
�
�

�
�
�
�

�

�
�
�

�
�
�
�

�

�
�
�

�
�
�
�

�

�
�
�

�
�
�
�

�

�
�
�

�
�
�
�

	

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�

��

�

�

��

��

��

�

�

�

�
�
�
�
�
�
�
�
�
�
�

	
�

�
�
�
�
�
�
�
�
�

�
��
�
�
��
�
��

����

����

��
�

����

��
�

��	�

����

����

����

����

����

�
��

�
�
�
�
�

����� �������

���� ���� �� �����

����� ���� �����!

Figure 4.10 Area graph (looks like mountains) tracks the number of defects that must be fixed before
release (uses left-hand scale).

Now that we’ve reviewed the parts that make up the dashboard, let’s move
on to how to actually use and read the dashboard in helping you make the
critical decision: Is it time to stop testing?

Establish Planned Test Coverage as per
Operational Profile

Let’s say that the sales order component of Figure 3.11 has finally been
completed and is ready to undergo testing as part of system test. Testing of
the sales order component will consist of a series of test iterations where
two testers will spend about 30 hours each during a week testing the sales

order component. After each iteration, development will have several days
to fix defects, then rebuild and deliver a new version for the next iteration
of testing.

Using the operational profile of Figure 3.25, which includes use case criti-
cality, you build the following spreadsheet shown in Figure 4.11 to allocate
each test iteration’s 60 staff hours of testing (two testers at 30 hours each)
across the nine use cases of the sales order component.

142 CHAPTER 4

��� ����

������	
	��

����� �� �	���

����� ����� ���

���� ������	��

�
��� ���	���
 �����

����� �������� ���

����� �������

�
��� ��������	���
 �����

�
��� !���
 �����

"����#� �������

�����
 �����

��$���� ����
�#

�%��� ����� ������

&'()

&'(*

&'(*

&'+,

&'&*

&'&-

&'&(

&'&+

&'&+

+)

+*

+*

+&

(

(

+

+

+

���"! +'&& .&

.& ����� %���� / � ������	
	�� �� '()

0 +) ����� %����

Figure 4.11 Allocation of each test iteration’s 60 staff hours of testing across the nine use cases of the sales
order component as per the operational profile.

Initialize Dashboard Before Each Test Iteration

The dashboard is driven from a simple spreadsheet that is initialized before
each test iteration and then updated at the end of each test iteration (see
Figure 4.12).

For tracking projects with multiple component teams or cross-company
multi-project programs, you can implement this as a database to allow
concurrent updates from multiple test teams.

Figure 4.12 Dashboard spreadsheet table typical of just prior to each test iteration.

Each row of the spreadsheet in Figure 4.12 is a use case. You start by initial-
izing the spreadsheet portion of the dashboard with the planned staff
hours of testing for the iteration, plus the failure intensity objective per use
case; see Figure 4.12, columns Planned Hours of Test and Failure Intensity
Objective. For a failure intensity objective, you decide to keep things sim-
ple and use a single failure intensity objective for all use cases (i.e., a single
failure intensity objective for the sales order component as a whole).5 From
an analysis of a past release similar to that illustrated in Figure 4.7 you
arrive at a failure intensity objective of 1.50 severe defects per staff day of
testing. But instead of failures per day, you will be working in failures per
hour; your sales order department is open ten hours a day, so you divide by
ten to arrive at .15 severe defects per hour. Unless there are changes in plan,
these two columns will remain unchanged for the duration of testing.

It is quite likely that at the beginning of system testing there are known
defects that you know must be fixed before product release but have not yet
been fixed. This number is recorded per use case in column # Must Fix
Defects. This column is cumulative (i.e., it is not cleared at the start of a test

RELIABILITY AND KNOWING WHEN TO STOP TESTING 143

5 Individual failure intensity objectives for each use case could have been set using the results of
Figure 4.4.

iteration) but rather reflects the accumulation of defects that must be
resolved before product ship. This is The Swamp! Until it is drained, the
product cannot release. There are two points about this column worth
emphasizing:

1. It is common for a product to have a backlog of known defects of vary-
ing severity that never get resolved. This column should reflect just
those defects that are preventing shipment of the product for this
release.

2. While failure intensity is measured in terms of a specific severity
level—say, “high”—column # Must Fix Defects tracks all defects that
need to get resolved before release, regardless of severity. When a
defect is fixed—regardless of its severity—there is a risk that it will
break something else, and/or reveal a new defect that it had previous-
ly “hidden.” You need to have a count of the fixes that are yet to be
made to the product, regardless of the severity of the defects they are
resolving.

The next two columns in Figure 4.12, Actual Hours of Test and Failures,
will be filled in at the end of each test iteration. The last column, Failure
Intensity, is a calculated field for each use case and equals Failures divid-
ed by Actual Hours of Test.

At the start of the first test iteration, and the start of all subsequent test iter-
ations, the dashboard will look something like Figure 4.13, which reflects
the settings of the spreadsheet in Figure 4.12.

144 CHAPTER 4

Figure 4.13 At the start of each test iteration the dashboard looks something like this.

Update the Dashboard at the End of Each Test
Iteration

At the end of each test iteration, the spreadsheet portion of the dashboard
is updated to reflect the vital stats of testing. Let’s look at some common
configurations you are likely to find the dashboard in at the end of a test
iteration.

Early Iterations: Low Test Coverage, High Failure
Intensity and Open Defects

Figures 4.14 through 4.17 show the dashboard in a state typical of the end
of an early test iteration where defects are so prevalent that the testing team
is unable to actually expend the total planned amount of test time running
tests due to delays from having to re-start failed runs, logging defects in the
defect tracking tool, and the inability to run some features of the product.

RELIABILITY AND KNOWING WHEN TO STOP TESTING 145

�
��
�
�
�
�
���
	
�
�

��
�
�

	
��
�
�
�
�
��
�
�
�

�
�
��

��
�
�
�
��
�
�
�
�

�
��
�
�
�	
��
�	
�
���
	
�
�

��
�
�

�
��
�
�
�
�
�
�
�

��
�
�

�
���

	
�
�

�
�
�
�
�
	
�

�
�
	
�
�
�

��
�
�

��

��

��

��

��

��

�

�

�

�

�

�
�
�
�
�
�
�
�
�
�
�

	
�

�
�
�
�
�
�
�
�
�

�
��
�
�
��
�
��

����

����

����

�� �

����

��!�

����

��"�

����

����

����

�
��

�
�
�
�
�

#
�
$
�
�
�
�

�
�
��
��
�

�
%
�
�
&

��
�
�

'
��
��
�

This is indicated in Figure 4.15 in that the bars showing actual expended
test hours do not reach up and touch the target horizontal bars showing
planned expenditure via the operational profile. Indeed, some use cases
received no testing at all.

146 CHAPTER 4

Figure 4.14 Spreadsheet portion of dashboard indicative of end of an early test iteration.

It’s important to emphasize that if your unit of measure for the operational
profile is staff hours or days expended, this needs to reflect time spent actu-
ally running tests, not time spent on other activities such as defect tracking,
reports, and so on. On the other hand, practically speaking, I think it’s more
important to be consistent in the reporting than it is to be accurate; after
all, it is the relative improvement in reliability we are looking for. And if it
came down to tracking reliability with guesstimate data versus not doing it
at all, I’d definitely say do it with guesstimate data.

Another key indicator in the dashboard is that the failure intensity experi-
enced in testing is much higher than the target failure intensity objective;
this is pointed out in Figure 4.16. For the product to release, the gray bar
indicating experienced failure intensity needs to drop down to or below the
failure intensity line.

Figure 4.15 Dashboard showing that actual hours of testing did not meet with planned expenditure. Some
use cases (Cancel Order, Request Catalog, and Check Order Status) receive no testing at all.

RELIABILITY AND KNOWING WHEN TO STOP TESTING 147

�
��
�
�
�
�
���
	
�
�

��
�
�

	
��
�
�
�
�
��
�
�
�

�
�
��

��
�
�
�
��
�
�
�
�

�
��
�
�
�	
��
�	
�
���
	
�
�

��
�
�

�
��
�
�
�
�
�
�
�

��
�
�

�
���

	
�
�

�
�
�
�
�
	
�

�
�
	
�
�
�

��
�
�

��

��

��

��

��

��

�

�

�

�

�

�
�
�
�
�
�
�
�
�
�
�

	
�

�
�
�
�
�
�
�
�
�

�
��
�
�
��
�
��

����

����

����

�� �

����

��!�

����

��"�

����

����

����

�
��

�
�
�
�
�

#
�
$
�
�
�
�

�
�
��
��
�

�
%
�
�
&

��
�
�

'
��
��
�

������ %���� �(���� ��

	�� ����)��		��

%���� ��)�� �%�

�)������	��)��(����

�
��
�
�
�
�
���
	
�
�

��
�
�

	
��
�
�
�
�
��
�
�
�

�
�
��

��
�
�
�
��
�
�
�
�

�
��
�
�
�	
��
�	
�
���
	
�
�

��
�
�

�
��
�
�
�
�
�
�
�

��
�
�

�
���

	
�
�

�
�
�
�
�
	
�

�
�
	
�
�
�

��
�
�

��

��

��

��

��

��

�

�

�

�

�

�
�
�
�
�
�
�
�
�
�
�

	
�

�
�
�
�
�
�
�
�
�

�
��
�
�
��
�
��

����

����

����

�� �

����

��!�

����

��"�

����

����

����

�
��

�
�
�
�
�

#
�
$
�
�
�
�

�
�
��
��
�

�
%
�
�
&

��
�
�

'
��
��
�

(������ �	��	���� ��

�)�*� �%� ������

+������ �	��	����

�),����*�

Figure 4.16 Dashboard showing that experienced failure intensity was much greater than target failure
intensity objective.

And finally, as Figure 4.17 points out, the swamp of defects that need to be
fixed before release is on the rise. Remember, open defects are tracked
using the left-hand scale.

148 CHAPTER 4

�
��
�
�
�
�
���
	
�
�

��
�
�

	
��
�
�
�
�
��
�
�
�

�
�
��

��
�
�
�
��
�
�
�
�

�
��
�
�
�	
��
�	
�
���
	
�
�

��
�
�

�
��
�
�
�
�
�
�
�

��
�
�

�
���

	
�
�

�
�
�
�
�
	
�

�
�
	
�
�
�

��
�
�

��

��

��

��

��

��

�

�

�

�

�

�
�
�
�
�
�
�
�
�
�
�

	
�

�
�
�
�
�
�
�
�
�

�
��
�
�
��
�
��

����

����

����

�� �

����

��!�

����

��"�

����

����

����

�
��

�
�
�
�
�

#
�
$
�
�
�
�

�
�
��
��
�

�
%
�
�
&

��
�
�

'
��
��
�

(%� �)��* �+ �*�	

��+���� �	 �	 �%� ����

Figure 4.17 Dashboard showing swamp of defects that must be fixed is rising.

Good Test Coverage, But…

Let’s look at another typical dashboard configuration. Figure 4.18 is typical
of the state of the dashboard as you might see it during a middle test itera-
tion. Looking at Figure 4.18, this picture looks rather optimistic—improved
coverage of tests, failure intensity dropping—except for the fact that the
swamp seems to be rising yet higher. This dashboard display is indicative
of a test team that is spinning its wheels until the backlog of defects can be
worked off. Yes, the test team is able to spend the planned amount of time
on testing each use case, and yes the failure intensity rate is dropping. But
it’s probably because the test team is running over the same working bits of
the system, steering around the known, already reported problems. Unless
a significant number of the backlog of defects is fixed, the next test iteration
will have a dashboard that looks very much like this one; the test team has
found all they can.

After the development group starts fixing the backlog of open defects, two
things are going to happen. First, functionality that was previously un-
usable will finally be tested, revealing yet more defects that had previously
been hidden; bugs hidden by other bugs are an effect a colleague of mine
calls the “bug shadow.” Second, some portion of the fixes will introduce yet
more defects. In short, as the swamp of open defects is lowered, the failure
intensity will likely rise again.

RELIABILITY AND KNOWING WHEN TO STOP TESTING 149

�
��
�
�
�
�
���
	
�
�

��
�
�

	
��
�
�
�
�
��
�
�
�

�
�
��

��
�
�
�
��
�
�
�
�

�
��
�
�
�	
��
�	
�
���
	
�
�

��
�
�

�
��
�
�
�
�
�
�
�

��
�
�

�
���

	
�
�

�
�
�
�
�
	
�

�
�
	
�
�
�

��
�
�

��

��

��

��

��

��

�

�

�

�

�

�
�
�
�
�
�
�
�
�
�
�

	
�

�
�
�
�
�
�
�
�
�

�
��
�
�
��
�
��

����

����

����

�� �

����

��!�

����

��"�

����

����

����

�
��

�
�
�
�
�

#
�
$
�
�
�
�

�
�
��
��
�

�
%
�
�
&

��
�
�

'
��
��
�

Figure 4.18 Dashboard that may indicate more testing is a waste unless backlog of open defects is lowered.

Do We Really Need Another Test Iteration?

This next example requires a bit of explanation as to how such a dashboard
could even come to be. Very late in system testing, when the product begins
to stabilize and the release date (original or probably revised) looms near,
defects that are discovered receive a new type of scrutiny. Not only are they
prioritized in terms of their effect on the customer, but they now receive
prioritization in terms of their risk to the project. The risk of fixing a defect
late in the game, close to the release date, is weighed against three factors:

1. What is the risk that if development fixes this defect, they will break
something else? Fixes to some parts of a product can have disastrous

ripple effects. The consequence of fixing one defect could well be the
introduction of a host more.

2. How much effort is required to fix this defect? When you are days from
a release, fixing a defect that is measured in staff months of effort may
simply not be an option.

3. If we fix the defect, how much testing will be needed to verify the fix
worked, and to verify it didn’t break something else (regression test-
ing)? The simplest of fixes sometimes require huge testing efforts to
properly verify.

An easy way to remember this is R-E-V: Risk of breaking something else;
Effort to make the fix; Verification effort to check the fix and regression test
the system. Given this tightened triaging of new defects, a team will some-
times opt to document a severe defect in the release notes rather than fix-
ing it. As the old saying goes, “‘Tis better to go with the devil you know than
the devil you don’t.” When this happens, it is quite possible to find yourself
staring at a dashboard like that of Figure 4.19.

150 CHAPTER 4

�
��
�
�
�
�
���
	
�
�

��
�
�

	
��
�
�
�
�
��
�
�
�

�
�
��

��
�
�
�
��
�
�
�
�

�
��
�
�
�	
��
�	
�
���
	
�
�

��
�
�

�
��
�
�
�
�
�
�
�

��
�
�

�
���

	
�
�

�
�
�
�
�
	
�

�
�
	
�
�
�

��
�
�

��

��

��

��

��

��

�

�

�

�

�

�
�
�
�
�
�
�
�
�
�
�

	
�

�
�
�
�
�
�
�
�
�

�
��
�
�
��
�
��

����

����

����

�� �

����

��!�

����

��"�

����

����

����

�
��

�
�
�
�
�

#
�
$
�
�
�
�

�
�
��
��
�

�
%
�
�
&

��
�
�

'
��
��
�

Figure 4.19 Good test coverage, and virtually no open defects. But is it safe to release with failure intensity
levels still so high?

In this dashboard, test coverage looks good—actual testing was given to use
cases in accordance with the plan as per the operational profile—and there
are very few defects that are going to be fixed (some were identified as too
risky to fix and were removed from the “Swamp”). Why not just fix those few
defects that you plan on fixing, do a spot check on the build, and release the
product?

The problem, of course, is that you have not met your failure intensity
objective. And a high failure intensity is the indicator for a high population
of latent defects (i.e., defects that still remain waiting to be discovered). If
you were to run another test iteration and vary tests a bit, chances are you
would keep finding defects. So the question is, do you go ahead and run
another iteration and find a new round of defects or let the customer do it?

Stop Testing!

Figure 4.20 illustrates the dashboard you want to see when it’s time to stop
testing and ship the product! The testing team is able to run tests on all use
cases in proportion to the operational profile; the swamp of defects has
been drained and the failure intensity experienced during test is at or
under the failure intensity objective.

RELIABILITY AND KNOWING WHEN TO STOP TESTING 151

�
��
�
�
�
�
���
	
�
�

��
�
�

	
��
�
�
�
�
��
�
�
�

�
�
��

��
�
�
�
��
�
�
�
�

�
��
�
�
�	
��
�	
�
���
	
�
�

��
�
�

�
��
�
�
�
�
�
�
�

��
�
�

�
���

	
�
�

�
�
�
�
�
	
�

�
�
	
�
�
�

��
�
�

��

��

��

��

��

��

�

�

�

�

�

�
�
�
�
�
�
�
�
�
�
�

	
�

�
�
�
�
�
�
�
�
�

�
��
�
�
��
�
��

����

����

����

�� �

����

��!�

����

��"�

����

����

����

�
��

�
�
�
�
�

#
�
$
�
�
�
�

�
�
��
��
�

�
%
�
�
&

��
�
�

'
��
��
�

������ %���� �(����

����)��		�� %���� ��

)�� �%� �)������	��

)��(��� (�� ��� ��� �����

*������ �	��	���� ��

�	��� �%� ������ (������

�	��	���� �+,����-� (��

��� ��� �����

Figure 4.20 Dashboard indicative of time to stop testing.

One drawback of the Swamp Report is that it is a look at the system at one
instance in time. In the next section, you’ll see how to extend that view to
provide a look at the system over time, across multiple test iterations, for
the entire project length if so desired.

Tracking the Swamp Through Time

A companion report of the Swamp Report that I’ve found useful is to plot
snapshots of the dashboard through time in a format as shown in Figure
4.21, allowing you to gain a perspective on progress through time. Dates of
snapshots run across the X-axis; each snapshot plots the key stats from the
Swamp Report: failure intensity, open defects, and testing effort expended.

The example in Figure 4.21 shows a large cross-company program consist-
ing of about 35 products and nearly as many project teams that were
required to release at the same time as part of a box-set of products. Tools,
such as the Swamp Report, were used to track the reliability growth of each
of the individual products, with this companion report providing a look at
the progress of the whole.

152 CHAPTER 4

����

����

���

���

���

���

�

�
��
		

�
�
�

	
�
�
�
�

�
�
�
�
�
�

	
�
�
�
��
�
��

�
	�
�
��

����

����

����

����

����

����

����

����

����

�
�
���

��
�
�
�
�
�
��
		

�
�

	
�
�
�
�

�
��

�
�

�
��

�
�

�
��

�

�
�

�
�

�
�
�
!

�
��
�
�

�
��

�
�

�
�"

�
�

�
��

�
�

�
�
�
!

�
�
�
�

�
�"

�
#

�
��

�
�

������ ��������

�	����

���		
���
	 �����!#

������� �!��!���� �!

������ $�	���� ���

���		 $��
	 ����

Figure 4.21 Companion report provides snapshots of the Swamp Report through time.

To wrap up our look at the “Swamp Report,” it is an easy to implement,
spreadsheet-based dashboard that provides at-a-glance monitoring of reli-
ability growth across a large number of “pieces” that form a whole (e.g., use
cases making up a component, components making up a project, or multi-
ple projects making up a program).

Determining the Effectiveness of Your SRE-Based
Test Process

Software reliability engineering promises to help teams work smarter to
deliver a reliable product. But how to tell if it is working? This chapter con-
cludes by looking at how to measure the Defect Detection Effectiveness of
a testing process, touted by some as the single most important quality
measure.

Defect Detection Effectiveness (DDE) is a measure of the effectiveness of a
testing process to detect defects. The formula for DDE is very simple: it is
the number of bugs detected by the testing process before the product
release divided by the total population of bugs (see Equation 4.4).

total defects found in testing
DDE = ____________________________________

total defects found in testing + defects found after testing that
were in the product at the time testing was done

Equation 4.4 Formula for calculating Defect Detection Effectiveness (DDE).

A run chart of defects through time is a good way to visualize DDE. Figure
4.22 is a run chart of cumulative severe defects found for a product release;
in fact, it is the same release for which we measured the failure intensity
earlier in this chapter (see Figure 4.7).

In this case, at the time testing was stopped and the product released, the
testing effort had found 582 severe defects. Subsequent to release, an addi-
tional 50 severe defects were found; therefore, DDE = 582 / (582+50), or
about 92%.

RELIABILITY AND KNOWING WHEN TO STOP TESTING 153

Figure 4.22 Run chart illustrating defects found in system test before and after release.

Because product testing is typically not directly equivalent to the use a
product experiences in the field from customers—it’s usually more rigor-
ous or less rigorous, but not exactly the same—arriving at a failure intensi-
ty objective may involve some trial and error. A failure intensity objective
that is too low (your reliability goal is too high) keeps a product in testing
longer than it needs to be. A failure intensity objective that is too high (your
reliability goal is too low) results in unhappy customers inflicted with a
buggy product along with the high cost of fixing defects in a deployed
product.

In the “But What’s the Right Failure Intensity Objective?” section, a low-tech
approach was described for determining a ballpark failure intensity objec-
tive: Think back to a project that you and your team remember as being
successful and that you believe was well received by the customer in terms
of reliability, then do some project archaeology to determine the failure
intensity of that project. DDE provides a quantitative approach allowing
you to correlate failure intensity objectives with successful releases meas-
ured by DDE. By tracking failure intensities during testing, followed by
DDE analysis after the release, you are able to determine whether you can
raise or lower failure intensity objectives.

154 CHAPTER 4

Product release

DDE = 582 / (582+50) = 92%

700

600

500

400

300

200

100

0

15-Aug 14-Oct 13-Dec 11-Feb 11-Apr 10-Jun 9-Aug 8-Oct 7-Dec 5-Feb 6-Apr

Another 50 found
after release

582 defects known
at time of release

As an example, the project for which we computed the failure intensity at
time of release in Figure 4.7 is also the same project for which we have just
calculated the DDE in Figure 4.22. So, as it turned out, a failure intensity of
1.55 at the time of release correlated with a DDE of about 92%, which was
considered a success. Future projects could therefore use a failure intensi-
ty objective of 1.55 with some measure of confidence that they would be
releasing a product the customer would perceive as reliable.

Another way to leverage DDE analysis with software reliability engineering
is by comparison of defects found soon after release versus much later. This
is illustrated in Figure 4.23; arrows show defects found almost immediate-
ly after the release compared with defects found up to seven months later.
Doing root cause analysis of such defects and asking why some were
caught so quickly and others took so long to be found can provide insight
into how to improve your system’s use cases, operational profile, and test
cases.

RELIABILITY AND KNOWING WHEN TO STOP TESTING 155

Product release

700

600

500

400

300

200

100

0

15-Aug 14-Oct 13-Dec 12-Feb 11-Apr 10-Jun 9-Aug 8-Oct 7-Dec 5-Feb 6-Apr

Defects found soon after
release versus defects that
took months for the customer
to find.

Figure 4.23 Analysis of defects found sooner rather than later can provide insights into the operational
profile of your product as used by the customer.

Final Notes on DDE

Although DDE is a simple measure, there are caveats of which to be aware.
First, DDE is a moving target; because it is impossible to know how many
defects there really are in a product, it is computed based on known defects
at some point in time, and that, of course, changes through time. Looking at
the run chart of Figure 4.22, the measured DDE starts at 100% at the time
of release (you don’t know what you have missed at this point) and then
continues to drop through time as defects are discovered after the release.
The trick is to identify a period of time after a release that is long enough for
the customer base to have adopted the new release and to have had suffi-
cient opportunity to begin finding defects.

There is also some confusion in the literature around this and similar
measures. Defect Removal Effectiveness is a measure of the effectiveness of
a development process to both detect, and then remove, defects. Some lit-
erature blurs this distinction (detection versus removal). I prefer detection
effectiveness rather than removal effectiveness because many develop-
ment groups don’t necessarily fix every defect they find—even severe
ones—for valid business reasons.

Also, some literature blurs the distinction between “efficiency” and “effec-
tiveness” by using the term defect detection efficiency as equivalent to
defect detection effectiveness. I prefer to keep these two measures dis-
tinct—effectiveness versus efficiency, as two organizations can have the
same effectiveness to detect/remove defects, with varying efficiency at
accomplishing the task. Yet other authors avoid the use of “effectiveness” or
“efficiency” altogether, using the term defect detection percentage.

So, just be aware that you may come across this measure called out by a
different name; your best bet is to simply look at how the measure is
calculated.

Chapter Review

In this chapter, we’ve talked about reliability; how to define it, measure it,
set goals in terms of it, and track it in testing. Let’s review some key points
from this chapter.

156 CHAPTER 4

• Reliability is the probability of failure-free operation for a
specified length of time in a specified environment. This def-
inition is user-centric (defined from the perspective of the
user using the system), and dynamic (failures only happen
when a product is being used).

• Having a quantifiable definition of reliability is the key to
being able to measure and track reliability during testing as a
means of helping decide when it’s time to stop testing. Two
common techniques for quantifying a reliability goal are:

• Failure intensity, which is the number of failures of a spec-
ified severity per unit of time, or number of transactions,
and so on.

• Exponential failure law, which provides the probability for
failure-free operation for a specified length of time, when
the failure intensity is constant (i.e., you aren’t patching the
system or adding features, as would generally be the case
for a system in use by a customer, in the field).

• A reliability growth curve is a run chart that lets you visualize
the failure intensity of a product during development and
test. Used in conjunction with a failure intensity objective, the
reliability growth curve allows you to tell if your system is get-
ting close to being ready for release.

• The Swamp Report is a spreadsheet-based dashboard that
lets you track three key factors to knowing whether it’s time to
stop testing and release a product: failure intensity, open
defects, and test coverage as per the operational profile. It
provides at-a-glance monitoring of reliability growth across a
large number of “pieces” that form a whole (use cases of a
component, components of a product, whole products that
are part of a program).

RELIABILITY AND KNOWING WHEN TO STOP TESTING 157

• Defect Detection Effectiveness (DDE) is a measure of the
effectiveness of a testing process to detect defects. DDE pro-
vides a quantitative approach to correlate failure intensity
objectives with successful releases measured by DDE. By
tracking failure intensities during testing, followed by DDE
analysis after the release, you are able to determine whether
you can raise, or need to lower, failure intensity objectives for
future releases.

158 CHAPTER 4

Posing Sharp Questions in Use Case Failure
Analysis and Test Design

“The main role of models is not so much to explain and to
predict…as to polarize thinking and to pose sharp questions.”

—Marc Kac, Some Mathematical Models in Science

As the popularity of use cases grows, so grows the need for systematic
means of doing failure analysis and test design from use cases. This is
particularly true for products—or components of products—that are safety-
critical, mission-critical, business-critical, or in general require high assur-
ance. And virtually all products, whether safety-critical or not, have at least
a few use cases the project team would like to make sure are rock-solid
reliable!

In Chapter 5, “Use Case Preconditions, Postconditions, and Invariants:
What They Didn’t Tell You, But You Need to Know!” we will look at a time-
tested technique for specifying the expected behavior of abstract data types
and objects—model-based specification—and apply it in a fresh way to
pose sharp questions in use case failure analysis: the analysis of potential
ways a system, specified by a use case, might fail. In doing so, the reader

159

Part 3

Model-Based Specification

(Preconditions, Postconditions,

and Invariants)

will learn some things about preconditions and postconditions they forgot
to mention in “Use Case 101!” This approach—thinking about failures
while writing use cases—is a powerful, risk-driven strategy, focusing testing
on detection of high impact defects first and providing the requirements
needed to design systems that fail in a safe way. The chapter concludes with
ideas on how to work smart in applying model-based specification, includ-
ing the “The Absolute Least You Need to Know: One Fundamental Lesson
and Three Simple Rules” section, which, if you get nothing else from the
chapter, will give you a take away that you can apply to any and all use
cases right away.

In Chapter 6, “Triple Threat Test Design for Use Cases,” you will learn that
not only does model-based specification with its preconditions, postcondi-
tions, and invariants provide an integrated basis for use case failure analy-
sis, it also provides just what is needed for test design by using Robert
Binder’s Extended Use Case Test Design Pattern. And because the test cases
are designed from the results of our failure analysis, they will target defects
that represent high impact failures.

Finally, a brief comment is appropriate about one of the main examples
used in both chapters: A tank used to store chemicals needed for a manu-
facturing process. The storage tank has a pipe through which the chemical
flows to fill the tank and a pipe out of which the chemical flows to manu-
facturing. This example is a variation of the classic “bathtub” problem that
is used in teaching systems thinking or system dynamics (Weinberg and
Weinberg 1998).1 The problem, though easy to state and initially under-
stand, turns out to have many nuances that tend to elude intuition, requir-
ing some systematic method—such as modeling—which leads us to pose
the sharp questions that need to be asked in use case failure analysis.

160 PART 3

1 A similar example is used by Storey (1996) as part of the discussion on fault-tolerant architectures.

With the growth in popularity of use case-driven development, in some
cases being applied to product components requiring high assurance—
e.g., safety-critical1 or mission-critical systems—there is an increased need
for a systematic means of doing failure analysis and test design from use
cases.

From a black-box testing perspective, preconditions and postconditions
are the quintessential elements of a use case, saying what it does without
saying how. They are the ideal basis for black-box testing; what more could
one need for specifying tests? And in failure analysis, preconditions play
the role of specifying those conditions under which the use case is intend-
ed to work correctly, and conversely the conditions under which the system
might fail. A system can then be implemented by using techniques such as
design by contract or defensive programming, where routines check their
preconditions—called assertions because they assert what the routine
assumes to be true—before running. If the precondition is false, the routine
can handle the exception safely (i.e., fail safe).2

161

5
Use Case Preconditions,

Postconditions, and Invariants:
What They Didn’t Tell You, But

You Need to Know!

1 See, for example, the role of use cases in “drive by wire” cars in Johannessen et al. (2001).
2 Storey (1996) discusses the role of assertions in safety-critical systems and Binder (2000) looks at
their use in automated testing.

In reality, however, few use cases are produced with preconditions and
postconditions of substance enough to test from. If you look at your
favorite book on use cases, you are likely to find use cases with precondi-
tions but no postconditions (the significance of which will make sense
later) and postconditions with no preconditions. And even when both are
present, you would likely be hard pressed to tell what a use case did based
solely on the pre- and postconditions. While developers may be willing to
keep use cases informal (Cockburn, 2002)3 when it comes to failure analy-
sis and test design, something a bit more concrete is needed; hence, a num-
ber of proposals for making use cases more test-ready have appeared.4

In this chapter, we look briefly at the history of preconditions and postcon-
ditions and learn what they forgot to tell you in “Use Case 101”: precondi-
tions can be calculated from postconditions, and often with little more than
simple algebra! The usefulness of this fact should be obvious from a black-
box testing and failure analysis standpoint: given a black-box’s outputs (the
postcondition), you can calculate the set of inputs and starting states
which produce it (the precondition) and conversely the inputs and starting
states, which are excluded, could spell system failure, and might warrant
error handling tests. In this chapter, we also discuss invariants, which are to
use cases what safety requirements are to safety-critical systems. This
chapter concludes with some suggestions on working smart to apply the
techniques presented, including a section that gives you the very least you
need to know to apply the lessons of model-based specification today.

Sanity Check Before Proceeding

Unlike the other parts of this book where the ideas presented are fairly new
to use case development, the use case community already has existing def-
initions of “precondition” and “postcondition” and how they relate to use
cases. This makes for potential confusion when this chapter presents alter-
nate perspectives and even an idea or two that conflict with the views often
put forth by the use case community. One such difference I will mention
now to hopefully prevent confusion as you start to read.

162 CHAPTER 5

3 See Alistair Cockburn’s “Use Cases, Ten Years Later” (2002) for a discussion of this topic.
4 See, for example, (Binder 2000) and David Gelperin’s “Precise Use Cases.”

In this chapter, you will be looking at preconditions and postconditions of
individual operations or steps that make up a use case.5 This is a different
perspective from that of most use case literature that talks about pre- and
postconditions of the use case “as a whole.” One consequence of the latter
perspective is that the use case community has focused primarily on pre-
conditions that must be satisfied before the use case can start. But from a
failure analysis and test design standpoint this is not sufficient: there are
usually operations (for instance, later in the use case) whose preconditions
are to be satisfied by the postcondition of another operation earlier in the
same use case. While such preconditions do not prevent the use case from
starting, their violation can translate into system failure nevertheless.

While the presentation of pre- and postconditions in this chapter is, I
believe, consistent with UML in general (The UML Reference Manual
defines preconditions and postconditions in terms of operations
[Rumbaugh, Jacobson, and Booch 2005]), the chapter could be a little con-
fusing if you read it with the mindset that the only type of use case precon-
dition is one that must be satisfied before the use case starts.

This issue and others are discussed in more detail near the end of this
chapter; if you care to read ahead, see the “Further Thoughts: Precond-
itions, Postconditions, and Invariants in Use Cases” section. Remember,
the goal of this chapter is not to rehash what has already been said about
preconditions and postconditions in the use case literature. The goal of this
chapter is to think outside the box a bit and present to you a look at precon-
ditions and postconditions and how they relate to use cases from a whole
new perspective, that of model-based specification.

A Brief History of Preconditions and Postconditions

Preconditions and postconditions were a relatively recent addition to what
Alistair Cockburn, in his article “Use Cases, Ten Years Later,” calls the fully
dressed use case. They weren’t a part of Jacobson’s original use cases, or

USE CASE PRECONDITIONS, POSTCONDITIONS, AND INVARIANTS 163

5 As a classifier in UML, use cases have attributes and operations. A use case operation represents
“a piece of work the use case can perform.” For additional details on the structure of use cases,
refer to Rumbaugh, Jacobson, and Booch (2005).

OMT’s scenarios. But though a newcomer to use cases, the history of pre-
and postconditions goes back to at least the late 1960s with the work of
researchers like Floyd, Hoare, and Dijkstra.6

Preconditions and postconditions played a key role in reasoning about
programs (Does this program meet its specification?) and later with formal
specification languages like VDM (Vienna Development Method) and Z
(pronounced “Zed”) as a way to specify the behavior of Abstract Data Types.
Much of what we today ascribe to being “object-oriented” is rooted in the
concept of Abstract Data Types (ADT). This is particularly true of the mat-
ter of specifying the expected behavior of an object, which is an issue of
great interest to testing. In 1971, David Parnas introduced “Information
Hiding,” which wrapped each “design decision” in a module with a defined
interface eliminating the need for details of how the module was pro-
grammed. But if you are going to hide the details of the implementation of
your new widget from your fellow programmers, you need some way of
communicating to them what the widget does. By the mid-to-late 1970s,
two approaches to tackling the problem were underway: the algebraic
specification approach and the model-based specification approach. VDM
and Z were outgrowths of the work on the latter.7 These formal specifica-
tion languages and techniques in turn influenced the object-oriented
community e.g., Bertrand Meyer’s Eiffel (1998) with its Design by Contract,
pre-UML “unified” object-oriented methodologies such as Fusion
(Coleman et al. 1994), and more recently UML’s Object Constraint
Language (OCL) (Warmer and Kleppe 1994).

Fast forwarding to today, though preconditions and postconditions are
now a part of the fully dressed use case, a key facet in their history, one cen-
tral to their use in reasoning about programs and specifications, has been
overlooked a tad. Preconditions can be calculated from postconditions. In
fact, that was pretty much the point originally. You can calculate precondi-
tions from postconditions as opposed to intuitively making them up. And
in the early days, there was even discussion as to whether it was better to
generate the precondition from the postcondition, or vice versa; the former
eventually won out and has been the norm since.

164 CHAPTER 5

6 A paper by Cliff Jones (2003) even traces roots going back to work by pioneers such as Von
Neuman and Turing in the late 1940s.
7 For an overview of algebraic and model-based specification, see Sommerville (2000).

This technique is usually described in terms of Hoare triples or predicate
transformer for calculating the weakest precondition (i.e., a technique that
transforms one predicate, the postcondition, into another, the precondi-
tion). The version of the technique we’ll see in this book is basically that
used by Z, and in that literature it is often just called “calculating the pre-
condition.”

The intent here is not to say that calculating the precondition is the only, or
even the right way you get preconditions for use cases; even in writing
specifications in formal languages like Z, one usually comes up with pre-
conditions in an intuitive sort of way. But that connection between precon-
dition and postcondition is always there to leverage (e.g., as a way to
demonstrate the validity of an intuitively derived precondition or to tell if
there are additional preconditions that have been overlooked). And it turns
out to be a handy tool for failure analysis of and test design from use cases.

Calculating Preconditions from Postconditions

The best way to illustrate this technique is through examples, so let’s dive
in and work through an example, and then step back and evaluate the
process.

Use Case Overview

A new on-line merchant has just introduced gift cards. You can buy a gift
card online and have it mailed to a friend. Each card has a unique ID; to buy
something you go to the Web site, log in using the ID, and then buy some-
thing. If you have change coming, a check for the difference is mailed to
you; this is seen as marketing differentiation from competitors that force
the customer to spend the full gift card price or more or lose the difference.
Figure 5.1 shows the main scenario for the Buy Something With Gift Card
use case.

USE CASE PRECONDITIONS, POSTCONDITIONS, AND INVARIANTS 165

Figure 5.1 Buy Something With Gift Card use case, main scenario.

With a typical use case description in hand, we are ready to think about
how the system, as described by this use case, could fail and identify pre-
conditions that would guard against such failure.

Step 1. Find a “Risky” Postcondition: Model as an
Equation

First, we identify an operation or step of the use case, the postcondition for
which we wish to calculate the precondition. In general, it’s not safe to
assume that the postconditions provided (if any) are the only postcondi-
tions. You’ll need to read the body of the use case and look for operations
where outputs are produced or state is changed, paying particular atten-
tion to ones doing “risky things.” Looking at our example, this operation
certainly fits the bill, so we’ll focus on it:

“System signals accounts payable to mail check for difference between
gift card value and price of item”

Next, we write the operation’s postcondition in the form of a simple equation:

CheckAmount = GiftCardValue – PriceOfItem

That was pretty easy. It’s important to note that the “=” is not assignment; it
is equality, and the equation describes a relationship between the three
variables. Use of equality is what allows us to leverage the power of algebra
that makes this technique work.8

166 CHAPTER 5

��� ���� �����

�� �������	
��� �� ��� �
�� ��� ��
�
� �
��

�� ��	� ��

�� �������	 �������
��� ��
���	���

�� �������	 ����	� ���	���� ����
	��� ��� ������ ���

�� ������ �

����
������	� �� ��
�
��� �� ���	���

 � ������ �

���� �������� !������ �� ��
� ����� ��	 �
���	���� �������

�� ��	� ����� ��� !	
�� ��
���

8 Gries and Schneider (1993) provide in-depth coverage of equality, equational logic and leverag-
ing simple algebra-style thinking applied to reasoning about programs.

Step 2. Identify a Potential Failure: State an Invariant

This next step is at the heart of this technique, so a bit of discussion is in
order. In a use case, postconditions are where the action is. They describe
the output produced and state changed by the use case. And it is precisely
when you are generating outputs and changing state that the opportunity
for really “screwing things up” occurs; as the old saying goes: “To err is
human. To really screw up you need a computer.” So how does one judge if
the computation described by a postcondition is valid (i.e., isn’t going to
screw something up)? To do so, we need some statement of what a valid
output or valid system state is. These statements of validity are typically
called invariants. In the formal methods community, they are variously
called data invariants or state invariants: statements that should always be
true about the data and system state being described. In the object-orient-
ed community, they are called class invariants: something that should
always be true about a class and any object instantiated from it (class
invariants were inherited—no pun intended—from the formal methods
community, so they are quite similar). In the study of program algorithms,
there are loop invariants: something that should always be true about the
loop being programmed (loop as in “While X do Y”). The word “invariant”
simply means something that does not vary; is always true. The common
denominator in all these invariants is that they set constraints that post-
conditions should not “violate.”

So as a sanity check for the postconditions of our use case, we introduce the
use of invariants. Given these invariants, we can then ask if the computa-
tion described by the postcondition preserves them. As it turns out, the
answer is usually something like, “Yes, assuming that such and such is true
when the computation happens.” And that is a precondition: the “such and
such” that must be true in order that the postcondition preserves the invari-
ant (i.e., nothing gets “screwed up”).

Explanation aside, let’s look at the next step. Looking at our postcondition,
we ask what bad things could happen with respect to the computation the
postcondition is describing? One that comes immediately to mind is cut-
ting a check for more than the gift card was worth; that is literally a money-
losing proposition. So an invariant for this postcondition—remember,
something we always want to be true—is that the refund check amount
should never be more than the value of the gift card:

Invariant: CheckAmount < GiftCardValue

USE CASE PRECONDITIONS, POSTCONDITIONS, AND INVARIANTS 167

In the field of safety-critical systems—systems where failures pose risk of
injury or death—this process of asking what bad things can happen is
called Hazard Identification and Analysis. One identifies the hazards of a
system (controller overfills storage tank with toxic chemicals), then ana-
lyzes the conditions and failures that would need to occur to cause the haz-
ard to occur (e.g., using techniques such as fault tree analysis). One then
formulates safety requirements for the system designed to prevent that
combination of conditions and failures. This is a powerful risk-based test-
ing strategy, helping testing to focus on high-impact defects first, and is
essentially what we’ve done in this step.

Step 3. Compute the Precondition

All that remains now is to “turn the crank” to produce a precondition from
the postcondition and invariant (see Figure 5.2).

168 CHAPTER 5

���������	
 � �
�
���������

�
�
��������� � ��
�����
�� � �
�
���������

���
�����
�� � �

��
�����
�� � �

�
��
 �

�
��
	���
�	
�

�	
�� �����
�	 �!���"

 �

�
� ���������	

�

�

 ����� ����
��

��
��	�

�	�

�
���
�#
�� �����
�	

�!��� !# �!
���

	$

��

��������� ���� !�
�

�� �

%�
�
��
$	 �� ������

&�

 ��� �����	�

�	'

Figure 5.2 Calculating the precondition for invariant CheckAmount < GiftCardValue.

Let’s put all the pieces together and see what we have. This postcondition:

CheckAmount = GiftCardValue – PriceOfItem

…meets this invariant (a property we want to always be true):

CheckAmount < GiftCardValue

…as long as this precondition holds:

PriceOfItem > 0

The postcondition, precondition, and invariant work together as a unit, as
a team. They are like parts of a complete sentence; take away one, and the
full meaning is not known.

Your first reaction to the precondition we’ve just calculated may be some-
thing like: “But of course! Everyone assumes that prices are greater than
zero!” Right you are. And because everyone assumes it, it’s just the type of
precondition easily overlooked for error testing. But, in fact, it is a precon-
dition for the successful computation of the refund check, and things do go
awry: sign errors in coding, typing mistakes while entering prices in a data-
base, sabotage, and so on.

Why Does This Work?!

If you are completely happy to use this technique for calculating precondi-
tions without having to know why it works, feel free to skip this next bit.
Trying to explain why the precondition results from the postcondition and
invariant is probably harder to do than actually doing it. For an intuitive
explanation, let’s think back to some things you may remember learning in
algebra. Let’s take this equation:

y=3x-4

You’ll recall that given a single equation such as this, there are an infinite
number of solutions (values of x and y), and you may remember having to
graph equations like this one to visualize all the possible values of x and y
that satisfy this equation. Figure 5.3 is a graph for this equation; the line
stretches to infinity in both directions.

If we now add a second equation to the first and consider the two simulta-
neously as a pair, the second equation constrains the values of x and y to be
those that not only satisfy the first equation, but also the second:

y=3x-4

y=2x

USE CASE PRECONDITIONS, POSTCONDITIONS, AND INVARIANTS 169

This is visualized by graphing these two equations together; the two lines
intersect at x=4 and y=8, the one solution that simultaneously satisfies
both equations (see Figure 5.4).

170 CHAPTER 5

��

��

��

���

���

���

���

��� ��� �� � �� ��

������

������

� � �� � 	

�

Figure 5.3 Graph of points satisfying equation.

��

��

��

���

���

���

���

��� ��� ��
�

� �� ��

������

������

� � �� � 	

� �
� ��	
��	
 ���	�
	�� �� ��	

��	 ����� ����
���
��	
 ����

	�������
� � � � ��� � � �

Figure 5.4 Intersection of lines shows value satisfying both equations.

While graphing simultaneous equations is one way to solve them—and it
certainly helps to visualize what is going on (i.e., you are looking for the set
of values where the two equations overlap)—the preferred method is the
“algebraic solution.” You start with the original equations:

y=3x-4

y=2x

Now take the value of y from the first equation, and substitute it in the
second equation:

3x-4 = 2x

Then simplify:

x-4=0

x=4

You could then substitute the value for x (i.e., 4) into either of the original
equations to give you the value of y:

y=2x

y=2*4 = 8

Now let’s apply this idea to calculating preconditions. Previously we said
the postcondition, precondition, and invariant work together as a unit. We
can use our lesson from simultaneous equations to get a feel for the role
each plays. Let’s start with this postcondition from our example:

CheckAmount = GiftCardValue – PriceOfItem

For what values of CheckAmount, GiftCardValue, and PriceOfItem is this
equation valid? We know from our previous algebra example that it is valid
for an infinite number of values, some of which might result in undesired
behavior (e.g., when PriceOfItem is negative). So, we decide to constrain
the values by adding a second equation, actually an inequality:

CheckAmount < GiftCardValue

USE CASE PRECONDITIONS, POSTCONDITIONS, AND INVARIANTS 171

This inequality—our invariant—was selected to constrain the values to
ones that we felt were safe (i.e., we should never be writing checks for
greater than the original gift card’s value). So the postcondition and invari-
ant are like simultaneous equations from algebra. And solving simultane-
ous equations—either graphically or algebraically—involves looking for
the set of values that simultaneously satisfy both equations, and that… you
guessed it…is what the precondition is: the set of values that simultaneous-
ly satisfy both the postcondition and invariant (see Figure 5.5).

172 CHAPTER 5

������ �� ���������	
� ��

���������� �	

������
�
�� ���� ���
��� ������	

�
�	�

���������	
 � ��

��������� � ������
�
��

������ �� ���������	
 �	

��

��������� ���� ���
���
	���
�	��

���������	
 � ��

���������

�����	

�
�	� ����� ������ �� ������
�
��

����� ���� ������	

�
�	 �	

	���
�	� ���

���
��
�

Figure 5.5 Venn diagram illustration of precondition as those values which simultaneously satisfy the post-
condition and invariant.

So, at least in principle, you learned everything you need to know about com-
puting preconditions from postconditions and invariants in algebra class!

Modeling State Change

Frequently, a use case involves change to the state of a system. In such
instances, in order to calculate preconditions, we need a way to model the
system’s before and after state. Again, a simple example is the best way to
illustrate. In the following example, WidgetsInStock is a state variable; a set
of state variables such as WidgetsInStock are what define the state of, say,

an inventory control system. We can represent the after version of a state
variable with the postfix prime ('). This equation describes the expected
results of one step in a use case, that of shipping widgets. It describes the
relationship between the number of widgets that were in stock when the
use case started (no prime) versus the number of widgets in stock after
some number were shipped (primed):

WidgetsInStock' = WidgetsInStock – WidgetsShipped

Again, keep in mind that “=” is equality, not assignment: the equation
describes a relationship between the variables.9

Having before and after versions of state variables allows us to talk about
invariants that involve both. The state variable WidgetsInStock is subject
to the invariant that it should always be greater than or equal to zero, and
this should be true before and after the postcondition completes. Here is
this invariant stated for the after version of the state variable, i.e., this use
case should never ship more widgets than are in stock (that’s the failure to
be avoided):

Invariant: WidgetsInStock' ≥ 0

Turning the crank, we get the precondition that ensures the postcondition
meets this invariant (see Figure 5.6).

USE CASE PRECONDITIONS, POSTCONDITIONS, AND INVARIANTS 173

���������	�
��
 � �

���������	�
�� � �������	������ � �

���������	�
�� � �������	������

	���� ���� ��� ����������

�� ��� ��������
� ��
���

�������������������	�
��

���� ��� ����� ��
� ���

�
���
�����
��

	������� ��� ��������
� ��
��

�� �������������	������

�
 �
�� ������ ��� ��
��

����
�����
��

Figure 5.6 Calculating precondition for invariant WidgetsInStock’ ≥ 0.

9 The convention used here of decorating state variables with prime follows that of the model-
based specification languages Z and VDM. In Eiffel, the prefix old is used.

WidgetsInStock = old WidgetsInStock – WidgetsShipped. See Meyer (1988). In UML’s Object
Constraint Language (OCL) the postfix @pre is used:

WidgetsInStock = WidgetsInStock@pre – WidgetsShipped. See Warmer and Kleppe (1999).

Working through simple examples such as this allows you to gain confi-
dence that the technique yields results you intuitively know are true.

Model-Based Specification

Models—explicit or mental—play a big role in failure analysis and in test
design. This technique is a style of modeling aptly named model-based
specification: it relies on building a simple model of the data and/or state of
the thing being specified, then operations (e.g., steps in a use case) are
defined in terms of how they modify that model.

There is a subtle but very important point that needs to be made about
the state variables used in model-based specification, especially if you
are accustomed to “instance variables” or “member variables” in object-
oriented programming languages. The variables WidgetsInStock and
WidgetsInStock' are two separate variables in the model we are building.
They do refer to the same single instance/member variable in the applica-
tion (assuming that is how the application was implemented), but it
requires multiple, separate variables in the model-based specification itself
in order to be able to talk about the different states the application
instance/member variable might be in.

Reasoning About State Through Time

Working with before and after versions of state variables, unprimed and
primed respectively (and remember they are separate variables in the
model) can take some getting accustomed to, but it is a powerful technique
for reasoning about use cases. It’s basically the same technique physicists
use when they talk about, say, the velocity of an object at time-zero with a
variable like V0 versus the velocity at time-n with a variable like Vn. Let’s
work through another example using this technique.

174 CHAPTER 5

Use Case Overview

A manufacturing plant uses a storage tank to hold chemicals needed for its
widget production; see Figure 5.7. The storage tank has a pipe through
which the chemical flows to fill the tank and a pipe out of which the chem-
ical flows to the machine that manufactures widgets. Rate of production by
manufacturing determines the rate at which the chemical is needed and,
hence, the rate of flow out of the tank. A new computer-based controller
is being built to monitor levels in the tank, increasing or decreasing flow
into the tank as needed. Sensors provide the controller with the current
level in the tank, and the controller is programmed with a set target at
which levels are ideally maintained in order to achieve a desired fluid pres-
sure in the tank.

USE CASE PRECONDITIONS, POSTCONDITIONS, AND INVARIANTS 175

������ ���	
 �� ���� ���

�	���� ���	
 �� ����
�	�

����
	�
�
�

����
�	�
�
�

Figure 5.7 Chemical tank diagram showing flow in and flow out of the tank.

Figure 5.8 is the main scenario of the use case for maintaining the level of
the chemical in the tank at the target level. The actor in this use case is the
controller.

Figure 5.8 Main scenario, controller’s use case for maintaining level of chemical in tank.

Use case description in hand, we are ready to think about how the con-
troller might fail while executing this use case and identify preconditions
that would guard against it.

Step 1. Find “Risky” Postconditions: Model as
Equations

Clearly, controlling the rate of flow into the tank is the heart of this use case
and a source of risk. Focusing on the control of this, we build a simple
model of the postconditions of this facet of the use case (see Figure 5.9).

Step 2. Identify a Potential Failure: State an
Invariant

There are two obvious failures this use case presents: failure to properly
control the level resulting in the level dropping too low for manufacturing
purposes or overfilling the tank resulting in a chemical spill.

176 CHAPTER 5

��� ���� �����

�� ���������� ���	
�� ��
�
���	

� �
� ������� ����� �
���� �����

�� ���������� 	�
��
��� ��� ���� 	��� ��� �
��

�� ���������� ���	���� �	�� �� ����� 	� �
��

�� ����
���	

� ��

��� �
���� ������
��������� ����
�� ���� 	��� ���

�
�� ��
� ��� �� �����	�� ��� �
��� ����	

� 	� �������� �� �
���� �����

USE CASE PRECONDITIONS, POSTCONDITIONS, AND INVARIANTS 177

A good place to start any model is to
define the domain—the set of all
possible valid values—for the
variables. Domain definitions act like
invariants: they are assumed to always
be true (for example, InFlow should never drop
below zero, or be greater than MaxFlow)

Lower Boundary: In this case, simply
asking if InFlow and OutFlow could
be negative leads to the question of
direction of flow of fluid in the pipes.
A negative flow would indicate
backward movement through the
pipes, known as backwash. We decide
this is a real possibility, but one to be
covered by another use case. This use
case will deal only with forward
movement through the pipe.

Upper Boundary: MaxFlow is some
upper bound that specifies the
maximum safe rate of flow into, or out
of, the tank (safe in terms of design
limits on flow valves, tank construction,
and so on.)

The first step in the use case is that the
controller notices that levels are too
low and acts to increase flow into the
tank to start refilling.

This postcondition describes the results
of that operation: It says the flow into
the tank is changed by amount Delta,
causing the level to rise. Note the use
of prime to distinguish the new rate of
flow (primed) from the initial
(unprimed).

At some point, the level of the chemical
reaches the target level. To prevent
the level from continuing to rise, the
rate of flow into the tank is changed, once
again, this time to match the rate of flow
out. This will hold the level at a steady state
until such time as the flow rate out of the
tank changes again. Notice the use of
primes to distinguish the final rate of flow
in (double primed) from the initial rate
(unprimed) and the intermediate rate
(one prime).

Notice also the use of primes to
distinguish the rate of flow out of the
tank subsequent to the start of refilling,
through to the end of use case (primed)
versus the initial rate (unprimed);
because filling the tank will take time,
the rate of flow out of the tank may
have changed from its initial value by
the time the use case completes.

0 ≤ InFlow ≤ MaxFlow

0 ≤ OutFlow ≤ MaxFlow

InFlow' = OutFlow + Delta

InFlow'' = OutFlow'

1

1 “Delta,” the Greek letter, is often used to denote change. Here it represents the incremental increase in
rate of flow into the tank used for refilling. It is a constant whose actual value the model does not specify.

Figure 5.9 Model of main scenario for refilling chemical tank.

From these potential failures, let’s identify invariants, something that
should always be true about the rates of flow into, and out of, the tank for
this use case. In this use case, we have identified these state variables rep-
resenting the rate of flow into and out of the tank at different points in time:

InFlow—initial rate of flow into the tank when the use case starts

InFlow'—the flow rate to increase the level in the tank

InFlow"—the flow rate at the end of the use case to stabilize the level

OutFlow—initial rate of flow out of the tank when the use case starts

OutFlow'—the rate of flow out of the tank subsequent to the start of
refilling through to end of use case

For this use case, the invariants of Figure 5.10 should always be true about
these state variables; if postconditions of the use case violate them, the fail-
ures identified previously are possible outcomes.

178 CHAPTER 5

���������� ���	
��
 ����	
�

���������� ���	
�� � ���	
��

�� ���� ���� �
� ����� ��� 	���	 �
�	� �
� �����

�� ��� ����
� �	
� �� ���� ��
��� �
 ����� ���

	���	 �
 ���� �InFlow'�� �� ��		 ���� �
 ��
������� �� ��� ���
� ��� ��� ���� �������
 �

�������
�����		��� �InFlow”�� ������
InFlow" ��� �� 	
��� ���� InFlow'
�

�����		��� ��		
����� �� ��	���
��	 ��������

	���
� ���� �� �� �	�� �
 ���� !�"� #��� ��		� �

��������
� �
��������$ �� �
�������� ��� 	���	

��������
��
� � ������	� ��

�� ��	�� �

��
�����

Figure 5.10 Invariants that should always be true when refilling the tank.

We now have a model of the postconditions and invariants they should not
violate (i.e., cause to fail). We are ready to calculate preconditions needed
to guard the invariants.

Step 3. Calculate Preconditions

We now calculate the precondition for each of these invariants one at a
time. Remember a precondition guards a specific invariant from one or
more specific postconditions. They work as a unit. We start with InFlow' >
OutFlow (see Figure 5.11).

Figure 5.11 Calculating the precondition to guard invariant InFlow’ > OutFlow.

A precondition of Delta > 0 is intuitive and probably assumed. But, as
noted previously, assumptions are often overlooked; from a testing per-
spective, one would want to ensure that the system checks for this case as
ignoring it could eventually lead to depletion of chemicals in the tank.

Now we calculate the precondition for the next invariant, InFlow" <
InFlow' (see Figure 5.12).

USE CASE PRECONDITIONS, POSTCONDITIONS, AND INVARIANTS 179

InFlow' > OutFlow

OutFlow + Delta > OutFlow

Start with the invariant.

In the expression above, substitute InFlow'
with its value from the postcondition (that is,
InFlow' = OutFlow + Delta).

Delta > 0 Solve the expression above for Delta. This is
our precondition.

������� � �������

	
����� � 	
����� �
����

����� ���� ��� ����������

�� ��� ���������� ������ �
�����
�� InFlow'
��� InFlow” ���� ����� ���
�� ���� �����

���������������

InFlow” = OutFlow'
InFlow' = OutFlow + Delta

 �� ���
�� ����� �� ���������� ��!����"

 ��� �� �
� �������������

Figure 5.12 Calculate precondition to guard invariant InFlow’’ < InFlow’.

What does OutFlow' < OutFlow + Delta as a precondition mean? This pre-
condition has identified a potentially hazardous race condition in our use
case. Because filling the tank takes time, the rate of flow out of the tank may
change before the target level is reached. If, during the filling of the tank,
OutFlow' increased to be equal to OutFlow + Delta, the level in the tank
would stop rising, stabilize, and the use case would not terminate until the
flow out changed again. If, during the filling of the tank, OutFlow' increased
to be greater than OutFlow + Delta, the level in the tank would fall, poten-
tially depleting chemicals in the tank. This precondition has identified that
for the invariant to be met, OutFlow' can fluctuate up or down but only if it
stays strictly less than OutFlow + Delta. Clearly such a race condition
cannot be allowed and something will need to be done to prevent this

(e.g., some semaphore or constraint mechanism to prevent variance in the
flow out of the tank caused by manufacturing while the use case is in
progress).

In short, this precondition has found the holy grail of test cases: a defect
found before it reaches code!

Exploring Boundary Condition Failures

Many system failures don’t show up until the system is operated at or near
its boundary conditions; this is the motivation behind testing techniques
such as boundary-value analysis and domain analysis for example. Let’s see
how we can apply model-based specification to our chemical tank use
case, identifying the preconditions that specify when a system can be oper-
ated safely at its boundaries and conversely when we can expect failures to
occur.

Step 1. Identify Postconditions Associated with
Boundaries of Operation

In the previous section, boundaries were identified on the rate of flow in
and out of the chemical tank:

0 ≤ InFlow ≤ MaxFlow

0 ≤ OutFlow ≤ MaxFlow

Now we need to identify those postconditions that modify these variables
and therefore have the potential of pushing the system beyond its specified
bounds; in our chemical tank example, we have identified these two:

InFlow' = OutFlow + Delta

InFlow" = OutFlow'

180 CHAPTER 5

Step 2. State an Invariant the Postconditions
Should Not Violate

In a model-based specification, when you define the boundaries on an ini-
tial state variable (unprimed)—in testing this is called the domain of the
variable—it applies not only to the initial form of the variable (i.e., InFlow
and OutFlow) but also to the primed versions as well, InFlow', InFlow" and
OutFlow'. The domain definition of a variable is an invariant in its own
right, one that is said to be true for all versions of the variable, primed and
unprimed, in any scenario of the use case. What this means is that these
boundary definitions:

0 ≤ InFlow ≤ MaxFlow

0 ≤ OutFlow ≤ MaxFlow

also imply these, which we take as invariants that we want to assure
never fail:

0 ≤ InFlow' ≤ MaxFlow

0 ≤ InFlow" ≤ MaxFlow

0 ≤ OutFlow' ≤ MaxFlow

Step 3. Calculate Preconditions

We want to determine what additional preconditions—if any—are needed
to prevent the postconditions of Step 1 from causing the invariants of Step
2 to fail. But what did I mean by if any? When calculating preconditions,
there are four possible outcomes:

1. The precondition is such that it is always true or, said another way,
there is no precondition, meaning the postcondition should work in all
circumstances.

2. The calculated precondition is already implied by another existing
precondition; in this event, no additional precondition is needed.

3. The calculated precondition is identical to one already noted; again,
no new precondition is needed.

USE CASE PRECONDITIONS, POSTCONDITIONS, AND INVARIANTS 181

4. Or—bingo! We identify a missing precondition that is needed to avert
failure.

The boundary statements stated earlier work out to be six separate precon-
dition calculations: three boundary statements (InFlow', InFlow", and
OutFlow’) with each requiring one calculation for the lower bound, and
one for the upper bound. As it turns out, of the six calculated precondi-
tions, five are either implied or equal to existing preconditions. For brevi-
ty’s sake, we won’t do those calculations here. But one boundary does, in
fact, identify a failure scenario, and we calculate the precondition needed
to guard against it in Figure 5.13.

182 CHAPTER 5

InFlow' ≤ MaxFlow

OutFlow + Delta ≤ MaxFlow

Start with the invariant.

In the expression above, substitute InFlow'
with its value from the postcondition, (that is,
InFlow' = OutFlow + Delta).

Solve for OutFlow.
This is our precondition.

OutFlow ≤ MaxFlow – Delta

Figure 5.13 Calculating precondition to guard invariant InFlow’ ≤ MaxFlow.

The failure scenario we have identified is this: If at the start of the use case,
the flow out of the tank is running at maximum (i.e., OutFlow = MaxFlow),
it will not be possible to increase the flow into the tank high enough to start
refilling the tank without setting InFlow' to a value higher than MaxFlow,
the upper bound on safe rate of flow in and out of the tank. The precondi-
tion states the use case can only be expected to work if OutFlow is less than
maximum when the use case starts. As we have already established Delta >
0, we know OutFlow will be less than the maximum in the precondition.

Notice also that this precondition is a stronger constraint than the original
domain definition (i.e., the new precondition OutFlow ≤ MaxFlow – Delta
implies the domain definition condition of OutFlow ≤ MaxFlow, but not
vice versa) so the former is said to be the stronger condition and the latter
the weaker. In effect, the stronger overrides the weaker.

Further Thoughts: Preconditions, Postconditions,
and Invariants in Use Cases

This is a good time to step back and look at some issues associated with
preconditions, postconditions, and invariants as they apply to use cases. If
you are already familiar with preconditions and postconditions through
the use case literature, you have likely already noticed a few differences
between that perspective and the model-based perspective presented here;
we’ll explore these and other issues here.

Preconditions and Postconditions of Individual
Operations Versus the Use Case as a Whole

In this chapter, you have been looking at preconditions and postconditions
of individual operations or steps that make up a use case. This is a different
perspective from that of the use case literature, which generally talks about
pre- and postconditions of the use case as a whole. How do these two per-
spectives relate to one another?

Let’s start with postconditions: What is the relationship between postcon-
ditions of individual operations and the postconditions of the use case as a
whole? The change made by a use case as a whole is the collective change
made by the operations that make up the use case, so the postconditions
specifying the change of the use case as a whole are the collective postcon-
ditions of the operations that make up the use case. If we choose to collect
them together into a postcondition section of the use case, that is a matter
of style rather than substance. Of course, working at the level of individual
operations you’ll probably be able to identify more postconditions than
you might have had you worked at the use case level only, but that’s a mat-
ter of thoroughness, not a substantive difference.

A similar argument can be made for preconditions, but with one key differ-
ence. The use case literature typically defines preconditions as those con-
ditions that are necessary for the use case to start. But when working at the
level of individual operations, the preconditions define those conditions
that are necessary for the individual operation to start.10 The collection of

USE CASE PRECONDITIONS, POSTCONDITIONS, AND INVARIANTS 183

10 This is consistent with the definition used by Rumbaugh et al. (2005).

all preconditions for all operations that form the use case can be divided
into two groups:

1. Those preconditions that are satisfied external to the use case and
therefore must be satisfied before the use case starts.

2. Those preconditions that will be satisfied after the use case starts by a
postcondition of some operation within the same use case.

While the use case community has focused primarily on the first group—
labeling these “use case [as a whole] preconditions”—from a failure analy-
sis and test design standpoint this is not sufficient: the second group of pre-
conditions can just as easily be a source of system failure. The failure to sat-
isfy an operation’s precondition—whether it be the fault of something
totally outside of the use case or some previous step in the same use case—
spells potential system failure either way.

Scope of Preconditions and Postconditions:
Scenario Versus Whole Use Case

Another difference you may have noticed between the model-based per-
spective and the “standard” use case perspective is that of scope. In some
use case literature, you will read that preconditions and postconditions
should apply to all scenarios of a use case (i.e., to all possible paths through
a use case). From a model-based perspective, this is usually not true.
Because the model-based perspective views preconditions and postcondi-
tions as tied to operations performed by the steps of the use case, and
because the steps of a use case vary from scenario to scenario, we should
expect that their preconditions and postconditions will vary as well.

If this were simply an academic issue, it probably would not matter, but at
least from a black-box specification, testing, and failure analysis stand-
point, the model-based perspective of preconditions and postconditions is
preferred. Preconditions and postconditions are the quintessential tools
for black-box specification: saying what a thing does without saying how. If
the postconditions of a use case are—by definition—so general as to be
valid for all possible use case scenarios, they are likely not to be useful as a
basis for specifying expected behavior in test design or failure analysis. For
example, the outputs and final state of a failed attempt to withdraw cash

184 CHAPTER 5

from an ATM are not the same as a successful withdrawal: if your postcon-
ditions reflect this, they too will differ; if your postconditions don’t reflect
this, you can’t use them to specify the expected behavior of tests.

So, in this respect, the model-based perspective of preconditions and post-
conditions does indeed differ from that commonly presented in the use
case literature.

Postconditions Can Have More than One
Precondition

It may have been obvious from our chemical tank example, but it’s good to
be clear; a postcondition can be associated with more than one precondi-
tion. Given that a postcondition can potentially wreak havoc on more than
one invariant in the use case, it only makes sense that we need separate
preconditions for each of the invariants that are to be guarded. We saw just
such an example of this in our chemical tank use case. The postcondition

InFlow' = OutFlow + Delta

requires this precondition Delta > 0 to guard this invariant InFlow' >
OutFlow. But it also requires this precondition OutFlow ≤ MaxFlow –
Delta, to guard this invariant, InFlow' ≤ MaxFlow.

This further reinforces the concept that a specific precondition, postcondi-
tion, and invariant are a “team.” And the team members can play on more
than one team!

Weak and Strong Preconditions

The preconditions calculated with the techniques described in this chapter
are often called the weakest preconditions needed to prevent failure of the
invariant. These two examples from our chemical tank use case illustrate
what this means. In that use case, we computed two preconditions for the
chemical tank. First, we found that:

This precondition: Delta > 0

…was needed to prevent failure of invariant: InFlow' > OutFlow

USE CASE PRECONDITIONS, POSTCONDITIONS, AND INVARIANTS 185

Delta > 0 is the weakest precondition needed to ensure that the invariant
does not fail. “Weakest” simply means at the very least Delta must be
greater than zero; though, practically speaking, the use case probably
requires Delta have some value considerably bigger than zero to refill the
tank in a timely manner, for example, Delta = 50 (gallons per minute).

The other example from the chemical tank use case was this:

This precondition: OutFlow' < OutFlow + Delta

…was needed to prevent failure of invariant: InFlow" < InFlow'

OutFlow' < OutFlow + Delta is the weakest precondition needed to ensure
the invariant does not fail. But again, practically speaking, the use case
probably needs something stronger to ensure the rate of refill stays con-
stant, for instance, the precondition that OutFlow' remains less than or
equal to OutFlow throughout the refilling process, to the end of the use
case (i.e., OutFlow' ≤ Outflow).

These preconditions, Delta = 50 and OutFlow' ≤ OutFlow, are said to be
stronger preconditions because they imply the weaker forms, but not vice
versa. What does imply mean? Well, if Delta = 50, then certainly Delta > 0,
right? But if Delta > 0, it is not necessarily the case that Delta = 50!

And if OutFlow' ≤ OutFlow, then certainly OutFlow' < OutFlow + Delta
(given that Delta is greater than zero, which we have said is the case). But if
OutFlow' < OutFlow + Delta, it is not necessarily the case that OutFlow' ≤
OutFlow.

That’s what we mean by weak and strong preconditions. Strong precondi-
tions imply weak ones, but not vice versa. So, in a use case where we derive
a precondition to prevent an invariant from failing, we may decide to
strengthen the precondition, and that’s perfectly OK; the stronger precon-
dition will still guard the invariant. But we can’t weaken the precondition.
The one that is calculated is already the weakest form.

As we continue with our chemical tank example in the next chapter, we will
keep our calculated, weakest preconditions (i.e., Delta > 0 and OutFlow' <
OutFlow + Delta) but know that in “real life” one would probably replace
them with stronger, more practical ones.

186 CHAPTER 5

Types of Invariants in Use Cases

The one thing that all invariants have in common is their role11. The role of
an invariant in a model-based specification of a use case is to:

1. State a property, as a predicate (is either true or false), whose violation
(the predicate is false) may result in system failure.

2. Provide the basis for computing a precondition, in conjunction with
some postcondition.

As has already been noted, the role of invariants is very much like safety
requirements in safety critical systems. In safety critical systems, hazard
identification and analysis involves the identification of hazardous system
failures followed by analysis of the combinations of conditions that could
cause such failures. The final step is to then formulate safety requirements
designed to prevent the identified combination of conditions. These safety
requirements, not coincidentally, are often stated as invariant properties of
the system, called safety invariants (Storey 1996).

But, though all invariants have the same role, there are different types. As
already noted, “invariant” simply means something that is said to be
always true. But the scope of what “always” means bears some discussion.
The de facto standard is that when the term “invariant” is used, it is gener-
ally assumed you mean global invariant. But, in fact, not all invariants are
global; some are local invariants. The scope of what “always” means differs
between global and local invariants. A common example of a local invari-
ant is a loop invariant (loop as in “While X do Y”). The scope of “always” for
a loop invariant is local to a specific loop; it is a statement of truth about
that one loop. It is not a statement of truth about, say, all loops. Let’s look at
examples of these two types of invariants using the examples we’ve seen
thus far.

USE CASE PRECONDITIONS, POSTCONDITIONS, AND INVARIANTS 187

11 Gluch et al. (2002) make a distinction between invariants, assertions (which they define as local
invariants whose scope is confined to a single point of execution) and constraints (i.e., what is
called here a transition constraint). These distinctions are not made here; if it plays the role of an
invariant as defined, it will be called an invariant.

Global Invariants: Preconditions on Steroids

Global invariants are ones that are true for all states of a system, and as they
apply to use cases, they are true for all scenarios of the use case and prob-
ably for all use cases of the system.12 The most common type of global
invariant is the data invariant, which expresses some property that is true
about data: inputs, outputs or state variables. They are variously called
state invariants when used with state variables and class invariants when
used in the context of classes. This type of invariant may be stated in terms
of a single variable or a relationship over several variables. These are glob-
al data invariants from our examples:

WidgetsInStock ≥ 0

CheckAmount < GiftCardValue

Another common type of data invariant is the domain definition, a state-
ment about the set of all possible values a variable can take on; here are two
from the chemical tank example:

0 ≤ InFlow ≤ MaxFlow

0 ≤ OutFlow ≤ MaxFlow

Domain definitions are essentially also global data invariants: they make
claims about the values of the variables that should always be true.13

188 CHAPTER 5

12 Because use cases are used in so many ways—at various levels of abstraction and granularity,
from classes, to sub-systems, to whole products, and for all types of applications, from object-
oriented, to relational databases, to hardware—giving a general rule about the scope of invariants
across use cases is tricky. Look at where the invariant is coming from and determine what the
scope is there. So, for example, if the invariant is a class invariant, it will be true for any use cases
written about that class. If the invariant is an integrity constraint on data in a relational database,
it will apply for all use cases that create, read, update or delete that data. If the invariant is some
safety requirement associated with a piece of hardware, the invariant will be true for all use cases
written about that hardware.
13 The application of domain definitions as global invariants was illustrated in the “Exploring
Boundary Condition Failures” section.

In a model-based specification, global invariants are stated in terms of
unprimed state variables: their initial state before they are modified by a
postcondition (i.e., the state they are in when the use case begins). It is then
understood that the invariant applies to all subsequent primed versions of
the state variable as well: their state after they are modified by postcondi-
tions. For example:

Given this invariant: WidgetsInStock ≥ 0

…this would be true: WidgetsInStock' ≥ 0

…as well as this: WidgetsInStock" ≥ 0

…and so on

As this applies to use cases, the invariant—both unprimed and primed
forms—applies to all scenarios of the use case; if WidgetsInStock,
WidgetsInStock', WidgetsInStock", or WidgetsInStock'" appeared in other
scenarios of the use case, it is assumed that they would each be equal to or
greater than zero.

This is also true if multiple variables are involved in the invariant:

Given this invariant: CheckAmount < GiftCardValue

…this would be true: CheckAmount < GiftCardValue'

…as well as this: CheckAmount' < GiftCardValue"

…and this: CheckAmount" < GiftCardValue'"

…and so on

Global invariants are, in a sense, preconditions on steroids. Whereas a “reg-
ular” precondition may only guard one specific postcondition, global
invariants act as guards to all postconditions that use the state variables
covered in the global invariant. From a failure analysis and testing perspec-
tive, it is useful to keep this point in mind because they provide additional
ways to validate the correct functioning of the system. A global invariant is
a mini test case that can be repeated over and over to reaffirm that property
of the system is still holding.

USE CASE PRECONDITIONS, POSTCONDITIONS, AND INVARIANTS 189

Local Invariants

Local invariants are ones that are not necessarily true for all states of the
system, and so may only be true for the scope of a specific scenario. Local
invariants are a postcondition-like statement that strengthens another
existing postcondition in order to constrain the values that satisfy that
postcondition. Here’s an example from the chemical tank use case:

This invariant: InFlow' > OutFlow

…strengthens this postcondition: InFlow' = OutFlow + Delta

The easiest way to spot a local invariant in a model-based spec is that it
involves the use of one or more primed variables. A local invariant stated
about a primed variable cannot be assumed to apply to all unprimed and
primed versions of the invariant. For example:

From this invariant: InFlow' > OutFlow

…we cannot conclude that: InFlow > OutFlow

…or that: InFlow" > OutFlow

…or: InFlow" > OutFlow'

…and so on

Transition Constraints: A Special Kind of Local Invariant

There is a particular kind of local invariant that you’ve seen in the chemical
tank example that is used to express properties about state transitions.
These are what C.J. Date (2000) calls a transition constraint: they constrain
the legal transition of a state variable from one value to another. This is not
the same thing as a state invariant. A state invariant describes a valid state
or states; a transition constraint describes the allowed transition between
states. The easiest way to spot a transition constraint is that it involves the
primed and/or unprimed versions of a single state variable. This is a tran-
sition constraint from our chemical tank example:

InFlow" < InFlow'

190 CHAPTER 5

Transition constraints, though local invariants, may sometimes be describ-
ing global properties, but just at a local level. Let’s say that we have an
application that tracks the number of persons that enter a secured area in
the morning, and then counts the number that leave that night, allowing
for a check that no one has remained in the secure area unauthorized
overnight. The normal flow for the use case that tracks entry might be mod-
eled with a postcondition like:

Entered' = Entered + 1

This flow of the use case is executed each time a person enters one of sev-
eral turnstiles. If we had an alternate flow to the use case that tracked, say,
persons entering the area via elevator, we might model it with a postcondi-
tion, such as:

Entered' = Entered + NumberOnElevator

The following invariant, though stated locally in terms of primed variables,
expresses a property that is true across both use case scenarios, which is to
say that the state variable Entered should never decrease but should
always advance:

Entered' > Entered

So, though stated as a local invariant, they may in fact be describing a glob-
al, cross-scenario property.

Working Smart in How You Apply What You’ve Learned

Mathematically based techniques, such as model-based specification, are
called formal methods. As with any rigorous technique, you might not want
to apply it to every use case. And you might not even want to apply the full
technique. So, let’s see if we can put things in perspective and look at ways
to apply what you’ve learned in a sensible manner, namely:

• Prioritize where you apply model-based specification

• Stick to numeric problems

• Or, forget everything else and just use three simple rules!

USE CASE PRECONDITIONS, POSTCONDITIONS, AND INVARIANTS 191

Prioritize Where You Apply Model-Based
Specification

The first suggestion is to prioritize where you apply model-based specifica-
tion. A good approach to applying this technique would be to triage use
cases based on risk—a function of frequency of use and criticality of the use
case—and apply it to high-risk use cases. A low-tech, visual approach to the
triage of use cases is a “Boston Matrix” with the horizontal axis represent-
ing frequency of use and vertical axis representing use case criticality (see
Figure 5.14).14 Each use case is assigned to one of four quadrants as shown
below, with high-risk use cases receiving the most attention. The upper-
right quadrant represents those use cases that are both frequently used and
critical in nature, and where the biggest bang for the buck from applying
failure analysis via model-based specification will come from.

192 CHAPTER 5

Low
Risk

Medium
Risk

Low
Risk

High
Risk

Critical

Low
Criticality

Low
Frequency

Use

High
Frequency

Use

Figure 5.14 Boston Matrix-style approach to triaging use cases based on frequency of use and criticality.

14 Additional techniques for helping to triage use cases based on frequency of use and criticality are
provided in Part 2, “Software Reliability Engineering.” Part 1, “Quality Function Deployment
(QFD),” provides help in the use of QFD to prioritize use cases by business drivers in general.

Stick to Numeric Problems

All the examples in this chapter have been ones where the model was
numeric in nature (e.g., models of money, widgets in stock, and rates of
flow). Numeric problems probably provide the biggest “bang for the buck”
application of model-based specification. First, there are many, many
problems that can be stated numerically; after all, numerical computation
is the birthplace of computing. Most applications, even if not predomi-
nantly numerically oriented, are likely to have some component that is
numeric in nature. And second, applying this technique to numeric mod-
els is as easy as it gets, requiring little more than simple algebra.15 So the
combination of the wide range of problems to which it can be applied, cou-
pled with ease of learning and ease of use, makes the application of model-
based specification to the numerical component of use cases a high ROI
proposition, especially when the cost of failure is high.

The Absolute Least You Need to Know: One
Fundamental Lesson and Three Simple Rules

If, prior to reading this book, your only exposure to preconditions and post-
conditions has been via the use case literature, this chapter may be a bit
like as they say—“drinking from a fire hose.” So if you are thinking this is
way too complicated, let me leave you with one fundamental lesson and
three simple rules that anyone can use on absolutely any use case anytime.
Period.

As I noted previously, mathematically based techniques like this are called
formal methods. I coined the term Blue Collar Formal Methods to capture
the idea that for many formal methods—e.g., model-based specification—
there is often a less rigorous application of the method that provides bene-
fit without necessarily getting into all the math. It’s like there is a funda-
mental lesson to be learned from the formal method, but when learned you
can use that lesson without the math itself.

USE CASE PRECONDITIONS, POSTCONDITIONS, AND INVARIANTS 193

15 Model-based specification of non-numeric problems requires models using sets and relations;
fairly simple ideas from set theory but they are more difficult.

What would a Blue Collar version of this technique look like? Do you
remember that at the start of this chapter I made the comment “If you look
at your favorite book on use cases you are likely to find use cases with precon-
ditions but no postconditions (the significance of which will make sense
later)…”. Do you see the significance now? If preconditions are calculated
from a postcondition to preserve an invariant, what sense does it make to
have a precondition without a postcondition or an invariant?

Here then is the fundamental lesson that model-based specification
teaches:

Preconditions, postconditions and invariants work as a team.
They travel as a trio. If you see one without the others, something
is missing! Remember, the team that plays together stays together.

Here are three simple rules for applying that fundamental lesson:

1. When you write or see a lone precondition for a use case, your first
thought should be, “Hmm…I wonder what happens if it fails?”. Ask
yourself what postcondition it is associated with and what hazard
(violated invariant) it prevents the postcondition from causing. Yes,
you intuitively know that precondition is needed, but take some time
to try and identify why it’s needed and the consequence of its failure.
Remember: the precondition is part of a trio; find the rest of the team.

2. Postconditions are where the action is at in the use case, describing
the output produced and state changed. And it is precisely when you
are generating outputs and changing state that bad things can hap-
pen. When you write or see a lone postcondition, ask yourself, “I won-
der what hazard this postcondition poses (violated invariant) and
what precondition could prevent it?” Think team. Think trio.

3. Start thinking in terms of what must always be true about a use case
(i.e., its invariants). A good way to identify invariants is to think about
what can go wrong—hazard identification—then work backwards
from the hazard to identify what needs to stay right to prevent it. And
once you have identified an invariant look for operations whose post-
conditions could violate it, then apply rule #2.

Finally, for failure analysis and test design these rules need to be applied at
the operation level (i.e., to the individual steps that make up the use case).

194 CHAPTER 5

That’s it. Math aside, that is the heart of model-based specification con-
densed into one fundamental lesson and three simple rules that reflect the
tight coupling between preconditions, postconditions, and invariants:
something not readily evident from the use case literature, but something
you need to know!

Chapter Review

Let’s review the key points from this chapter:

• Model-based specification is a technique for crisply specify-
ing the expected behavior of use cases. Its components—a
simplified model of inputs, outputs and state; preconditions;
postconditions and invariants—provide an integrated basis
for use case failure analysis and test design.

• Preconditions, postconditions, and invariants work as a team.
The precondition identifies the conditions under which a
postcondition—which describes the results of a use case
operation—will work correctly and not cause the invariant
to fail.

• Invariants are to use cases what safety requirements are to
safety critical systems. They are a statement of properties
about the use case that we expect to be true. A good way to
identify invariants is to identify potential hazards of the use
case, then work backwards to identify what must be true to
prevent the hazard.

• A technique exists for the calculation of preconditions from a
postcondition and an invariant. For numeric applications,
the technique requires little more than simple algebra.

• Each operation or step that makes up a use case can have pre-
conditions that describe the conditions under which that
operation will work and postconditions that describe outputs

USE CASE PRECONDITIONS, POSTCONDITIONS, AND INVARIANTS 195

and state change of the operation. These operation precondi-
tions and postconditions are the source of preconditions and
postconditions that the use case literature associates with the
use case as a whole.

In the next chapter, we apply what we have learned to test case design to
catch system failures before they get to the customer. We’ll learn that when
it comes to testing, preconditions, postconditions, and invariants, taken as
a unit, are a veritable triple threat test case. And we’ll learn to do test design
by leveraging the best of model-based specification and Robert Binder’s
Extended Use Case Test Design Pattern.

196 CHAPTER 5

Testing plays a critical role in failure prevention, finding defects in the
product that could potentially lead to costly failure after the product is
released. In this chapter, you’ll learn that not only does the model-based
specification with its preconditions, postconditions, and invariants pro-
vide an integrated basis for use case failure analysis, it also provides just
what is needed for test design.

In the first section of this chapter, you’ll see why preconditions, postcondi-
tions, and invariants are ideal for design of test cases.

In the second section, you’ll learn how to take the preconditions, postcon-
ditions, and invariants generated from failure analysis and design test cases
using Robert Binder’s Extended Use Case Test Design Pattern. And because
the test cases are designed from the results of failure analysis, they will tar-
get defects that represent high-impact failures in the use case.

“Triple Threat” Test Cases?

In software testing, the terms “precondition” and “postcondition” are used,
by some, almost synonymously with “test case.” It should be no surprise,
then, that when it comes to testing, the preconditions, postconditions, and

197

6

Triple Threat Test Design
for Use Cases

invariants of the model-based specification, taken as a unit, are a veritable
triple threat test case. Let’s look at why this is so.

Threat #1—The Precondition

When it comes to testing, a key question is always what test points to select.
A test point is a specific value selected for an input or state variable to make
a test case. Preconditions are an ideal source for test point selection both in
terms of valid test cases and failure scenario testing (i.e., tests of the soft-
ware’s error-handling capabilities). Why is this?

Remember that a precondition is that set of values for an input or state
variable that satisfies both the postcondition and the invariant so that it
forms a type of “boundary” between valid test points (those that satisfy the
postcondition and invariant) and failure scenario test points (those that
satisfy one or the other but not both). Hence, preconditions often provide
just the detail needed to apply testing techniques that involve boundary
value analysis where you pick test points on, off, or inside “boundaries.”

Threat #2—The Postcondition

The postcondition is that part of a model-based specification that
describes what a use case step does, in terms of how it modifies the model.
In that sense, it is the very heart of model-based specification. For testing,
the postcondition is the primary means of stating what the expected result
of a test case should be. As Boris Beizer (1990) has said, test cases without
expected results are like a game of billiards where you don’t call the pocket
until after the ball goes in.

Threat # 3—The Invariant

And finally, rounding out the triple threat is the invariant. One might think
that the role of the invariant is pretty much done after the precondition has
been calculated. But invariants play several supporting roles in test cases.
First, the invariant can be used in a test case to cross-check the results of the
postcondition.

198 CHAPTER 6

Recall that the postcondition and invariant act like simultaneous equa-
tions: any actual result produced by the software must pass the check of
not only the postcondition (primary expected result), but also a cross-
check against the invariant. This provides an extra boost to the expected
result of the test case. This is particularly true in situations where you have
not derived a precondition. The invariant can essentially act as a fallback
precondition “after the fact”; i.e., a precondition is a check to see if condi-
tions are good before execution of an operation. An invariant can be used
to perform the same check after the operation executes; as the saying goes,
“Better late than never!”

Second, you will recall that global invariants are in a sense, preconditions
on steroids.1 Whereas a regular precondition guards one specific postcon-
dition, global invariants act as guards to all postconditions that use the
state variables covered in the global invariant. From a failure analysis and
testing perspective, global invariants are system properties that can be test-
ed for repeatedly. For example, in our widget shipping example from the
first chapter, the global invariant WidgetsInStock ≥ 0 is a mini test case that
can be performed repeatedly throughout all scenarios of the use case, and
even across all use cases (given that the scope of “global” is determined to
be application wide, e.g., it’s a business rule of the underlying database). If
at any time it is found that WidgetsInStock < 0, something has gone wrong
and the potential for failure is there.

In summary, preconditions, postconditions, and invariants are ideal for
test design for the following reasons:

• Preconditions identify conditions for operation success and
failure and provide a sound basis for test point selection

• Postconditions provide the expected results

• Invariants serve to cross-check expected results and, if global,
provide a mini-test case for checking system properties any-
time, anywhere

TRIPLE THREAT TEST DESIGN FOR USE CASES 199

1 See the “Global Invariants: Preconditions on Steroids” section in Chapter 5, “Preconditions,
Postconditions, and Invariants: What They Didn’t Tell You, But You Need to Know!”

The next section looks at applying this testing trio to the design of test cases
for the chemical tank example from Chapter 5.

Applying the Extended Use Case Test Design
Pattern

Robert Binder (2000) has laid out a process for defining a suite of test cases
for use cases as part of his Extended Use Case Test Design Pattern. There are
four steps in the process:

1. Identify the operational variables of the use case

2. Define the domain of each variable

3. Develop an operational relation for the use case

4. Build test cases

Not to put too fine a line on it, the approach identifies a set of operational
variables and an operational relation, which are to use cases what
instance/member variables and class invariant are to a class, respectively.
The combinations of different operational variable values and relation-
ships between the variables define the various states of the use case, each
state corresponding roughly to a different scenario or “variant” of the use
case.

In this section, you will see this four-step procedure applied to the
chemical tank example from the previous chapter. The description will
deviate slightly from Binder’s to better fit the model-based specification
approach, which includes preconditions, postconditions, invariants, and
unprimed/primed state variables.

A key point to gain from this section is that by building a model-based
specification, as was done in the previous chapter, you have essentially
done all the hard work of test design: a model-based specification is what
Binder calls a test-ready model, and all that is left is to essentially “fill in the
blanks” of the Extended Use Case Test Design Pattern.

200 CHAPTER 6

Step 1. Identify Operational Variables

Binder’s procedure begins by identifying the operational variables: those
factors that vary from scenario to scenario and which determine different
results from one use case scenario to the next.2 Operational variables
include inputs, outputs, and abstractions of the state of the system as
examples; all items that our model-based specification of the use case sup-
plies. The operational variables for the chemical tank use case are the ini-
tial state variables (unprimed), outputs, and changed state variables
(primed) utilized in the model-based specification of the use case:

• InFlow—Initial rate of flow into the tank when the use case
starts.

• OutFlow—Initial rate of flow out of the tank when the use
case starts.

• Delta—The incremental increase in rate of flow into the tank
used for refilling: A constant whose actual value the model
does not specify.

• InFlow'—The flow rate to increase the level in the tank.

• InFlow"—The flow rate at the end of the use case to stabilize
the level.

• OutFlow'—The rate of flow out of tank subsequent to the start
of refilling through to the end of the use case.

This is a good opportunity to re-emphasize that primed and unprimed ver-
sions of a variable are actually separate variables in the model. InFlow,
InFlow', and InFlow" are separate variables representing three separate
states of one aspect of the chemical tank, that is to say the rate of flow into
the tank. If they were not separate variables in the model, one would not be
able to specify relationships between them (e.g., InFlow" < InFlow').

TRIPLE THREAT TEST DESIGN FOR USE CASES 201

2 Binder actually says different “variants” and makes a distinction between variants and scenarios;
for simplicity, the focus here will be scenarios.

Independent Operational Variables

Having identified the set of operational variables, it remains to identify
which are independent: an independent variable is one that is not defined
in terms of another variable and therefore can be varied for testing purpos-
es. In a model-based specification, these are generally inputs (parameters
passed into the use case, which we do not have in our chemical tank exam-
ple) and the initial, unprimed state variables. For our example, the inde-
pendent variables are:

InFlow—initial rate of flow into the tank when the use case
starts

OutFlow—initial rate of flow out of the tank when the use case
starts

OutFlow'—the rate of flow out of tank subsequent to the start
of refilling through to the end of the use case

It is not common to have a primed variable, such as OutFlow', as an inde-
pendent variable in a model-based specification, but in this case, this vari-
able is not defined in terms of other variables, is controlled external to the
use case by the rate of production of manufacturing, and so can be manip-
ulated for testing purposes.

Step 2. Define Domains of the Operational
Variables

The second step of the Extended Use Case Test Design Pattern is to define
the domain of each operational variable: the set of all possible values. As
part of the model developed in the last chapter, these domain definitions
have already been defined:

0 ≤ InFlow ≤ MaxFlow

0 ≤ OutFlow ≤ MaxFlow

202 CHAPTER 6

Recall that MaxFlow is some upper bound that specifies the maximum safe
rate of flow into, or out of, the chemical tank. It is a positive constant whose
specific value is not addressed in the model.

Because domain definitions are essentially global data invariants, the fol-
lowing are also true:3

0 ≤ InFlow' ≤ MaxFlow

0 ≤ InFlow" ≤ MaxFlow

0 ≤ OutFlow' ≤ MaxFlow

Step 3. Develop the Operational Relation

Relations are a common way to specify the expected behavior—and hence
test cases—of all manner of “black boxes,” be they software or hardware.
They allow us to specify what something should do without having to say
how it is to be done. The Extended Use Case Test Design pattern applies this
idea to use cases in the form of what is called an operational relation,
implemented via a decision table.4 In this step, we’ll take the preconditions,
postconditions, and invariants of our model-based specification and put
them into the decision table format of Binder’s Extended Use Case Test
Design Pattern.

Tables as Relations

A common way to think of a relation is as a table. Figure 6.1 is part of a table
for computing personal income tax in the United States.

The tax table in Figure 6.1 defines a relationship between an input—your
annual taxable income (line 40 on the tax form)—and various outputs,
taxes due, for various filing status: single, married filed jointly, married

TRIPLE THREAT TEST DESIGN FOR USE CASES 203

3 This concept was discussed in Chapter 5, “Preconditions, Postconditions, and Invariants: What
They Didn’t Tell You, But You Need to Know!” Refer to the “Global Invariants: Preconditions on
Steroids” section.
4 Leffingwell and Widrig (2003) use a similar approach to specify test cases but call it a matrix.

filing separately, and head of household. Each row provides a different sce-
nario in your own personal “paying taxes” use case; if your income meets
the conditions predicated on the inputs (your income is “At least” X “But
less than” Y), that row outputs the tax rates that apply to you for the various
filing statuses. If you were testing a software program for doing personal
income taxes, you might use a table such as this to specify the expected
outputs of the program.

204 CHAPTER 6

���� ��� �����	Continued

� ��
� ��

��������

�
����� ��	

�
� ��� ���	

��

�����

���

����

���	

������

��

��
�

���

����

���

����

��

��
�

���

����

���

����

���

����

���

����

���

����

���

����

��
�

���

����

���

����

��

��
�

���

����

���

����

���

����

���

����

���

����

���

����

�

��	���

�����

�����

�����

�����

�����

�����

�����

���
�

�����

�����

�����

�����

�����

�����

�����

��

�

��
��

��
��

��
��

��
��

�������

����	�

���	���

���
�

�����

�����

�����

���
�

�����

�����

�����

�����

�����

�����

�����

�����

���
�

���
�

�����

�����

���
�

���
�

�����

�������

�����	�

����

������

�����

�����

�����

�����

�����

�����

�����

���
�

�����

�����

�����

�����

�����

�����

�����

��

�

��
��

��
��

��
��

��
��

!���

�� �

�����

����

��

�

��
��

��
��

��
��

��

�

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

���
�

���
�

�����

�����

���
�

���
�

�����

���� ��� ��	

"������# ��$ ���

��%� ����	� ����
&	���#

�		���

������

'�%� ��(��

� �������	�

�%�	����

Figure 6.1 Table for computing personal income tax in the United States.

Operational Relation Table for Chemical Tank Use Case

Binder’s operational relation applies this use of relations, implemented via
a decision table, to specify the expected behavior of use cases. To imple-
ment the operational relation, one needs to specify the relationships that

Figure 6.2 Operational variables form the columns of the operational relation of the chemical tank use case.

The first three columns are the independent variables that can be con-
trolled for testing. The next four columns provide the expected results: out-
puts and state change that we expect to see. An extra column (last) has
been added to the model to output status messages.

Next, we populate the first row with the use case main scenario, using the
domain definitions, preconditions, postconditions, and invariants from
our model-based specification to specify the range of values of each oper-
ational variable, constraints on, and relationships between, the operational
variables (see Figure 6.3).

TRIPLE THREAT TEST DESIGN FOR USE CASES 205

����������� ���	�
���
������� �������

������ ������� ��������

��	�	�� ���� ��

���� 	���

��� ����

��	�	�� ���� �� ����

��� �� ����

���� �� ���� ��� ��

���� ��
������� ��

����� �� ���	��	�� ��

��� �� ��� ����

����� ������� ������� ������� ��	��

 !���� ���� 	�

	��������

�� �	�� ����

 �"����� ���� ��

���� �� �	�� ����

�	��� ���� �� ����

��� �� ���
	�	#�

��$��

������ !������

��� ���	��

�����

Independent Variables Expected Results

InFlow OutFlow OutFlow'

Initial rate of
flow into
the tank

Initial rate of flow
out of tank

Rate of flow out of
tank subsequent to

start of refilling to
 end of use case

Delta InFlow' InFlow" Status/Action

Amount flow is
increased
to fill tank

Adjusted rate of
flow to fill tank

Final rate of flow
set to stabilize

level

Status message
and

action taken

0 ≤ Inflow ≤
Maxflow

0 ≤ OutFlow ≤
Maxflow

OutFlow ≤
MaxFlow – Delta

0 ≤ OutFlow' ≤
MaxFlow

OutFlow' < OutFlow
+ Delta

Delta > 0

0 ≤ InFlow' ≤
MaxFlow

InFlow' = OutFlow +
Delta

InFlow' > OutFlow

InFlow' ≤ MaxFlow

0 ≤ InFlow" ≤
Maxflow

InFlow" = OutFlow'

InFlow" < InFlow'

OK
Use Case

Main Scenario

Figure 6.3 Operational relation for main scenario of the chemical tank use case.

exist between each of the operational variables. We begin by listing the
operational variables as columns in a table, as shown in Figure 6.2.

In Binder’s operational relation, one scenario of the use case is allocated
one row of the table. Because our use case for refilling the chemical tank
only has a main scenario, the table has just one row. Keep in mind, howev-
er, that this one row is like a database query: it uses variables to describe all
possible instances of the main scenario.5

That’s it; the operational relation is defined. As this example illustrates, a
model-based specification with its preconditions, postconditions, and
invariants is itself a description of a relation,6 so it is just a matter of
rearranging the information to put it into the format of the Extended Use
Case Test Design Pattern’s operational relation.

An Alternate Format for the Operational Relation Table

As just noted, in Binder’s operational relation, one scenario of the use case
is allocated one row of the table. While this results in a compact table, there
are drawbacks. First, use cases are by their nature workflow oriented, often
describing step-by-step procedures. This workflow information can be use-
ful for testers during testing. Placing a scenario in one column tends to
compress out this workflow aspect of the use case; information that might
be useful to testers is lost. Second, restricting a scenario to a single row also
makes it difficult to see which preconditions, postconditions, and invari-
ants are working together as a team.

To address these two issues, you may find this alternate, expanded format
useful in which each use case scenario gets its own table (see Figures 6.4
and 6.5).

206 CHAPTER 6

5 In set theory, relations—which are sets of “records,” to use a database analogy—can be described
in two ways: by extension, like the tax table in Figure 6.1, where every record of the relation is enu-
merated one by one; or by intension, like the operational relation in Figure 6.3, where variables are
used to describe the properties of all records of the relation, just like a database query. They are
both relations, just described in different ways. This distinction is also called set enumeration ver-
sus set comprehension.
6 Model-based specification is rooted in set theory, of which relations are a part.

Figure 6.4 Operational relation with main scenario in expanded format (each scenario gets its own table).
Gray shows preconditions, postconditions, and invariants that are working together to describe a
use case step.

This expanded format has a number of advantages. First, the workflow
nature of the use case is preserved: use case steps—stated in natural lan-
guage—are listed in the first column. The second column allows references
to footnotes that are pertinent to testing; footnotes are listed at the bottom
of the table (refer to Figure 6.5).

Second, this overall combination of natural language augmented with a
model provides a test case that is both understandable while also being rig-
orous. Al Davis’ (1995) philosophy on requirements—“Augment, Never
Replace, Natural Language”—is, I believe, as appropriate for test cases as it
is for requirements.7

TRIPLE THREAT TEST DESIGN FOR USE CASES 207

Independent Variables Expected Results

InFlow OutFlow OutFlow'

Initial rate of flow
into the tank

Initial rate of flow
out of tank

Rate of flow out of
tank subsequent to

start of refilling to
 end of use case

Delta InFlow' InFlow" Status/Action

Amount flow is
increased
to fill tank

Adjusted rate of
flow to fill tank

Final rate of flow
set to stabilize

level

Status message
and action taken

0 ≤ Inflow ≤
Maxflow

0 ≤ OutFlow ≤
Maxflow

OutFlow ≤
MaxFlow – Delta

0 ≤ OutFlow' ≤
MaxFlow

OutFlow' < OutFlow
+ Delta

Delta > 0

0 ≤ InFlow' ≤
MaxFlow

InFlow' = OutFlow +
Delta

InFlow' > OutFlow

InFlow' ≤ MaxFlow

0 ≤ InFlow" ≤
Maxflow

InFlow" = OutFlow'

InFlow" < InFlow'

OK

Preconditions

Postcondition

Check
Invariant

Check
Invariant

Precondition

Postcondition

Postcondition

Check
Invariant

1

1

2

3

4a

4b

5

6

7

8

Te
st

 C
as

e
F

oo
tn

ot
es

Use Case Step

Domain definition for InFlow

Domain definition for OutFlow

Level drops below target level;
controller increases flow into

the tank to start refilling

Level rises to target level;
controller re-adjusts flow into

tank to stabilize level

Use completed successfully;
return status OK

7 See (Davis 1995), particularly Principle 54: Augment, Never Replace, Natural Language.

Figure 6.5 Test case footnotes for the operational relation of Figure 6.4.

And finally, the team of preconditions, postconditions, and invariants that
models and describes a use case step is directly associated with the step,
and each item receives a row in the matrix.8 The team that plays together
stays together!

It’s worth re-emphasizing that the content of Figure 6.4 is the same as that
of Figure 6.3: if the former were collapsed into a single row it would result
in the latter.

208 CHAPTER 6

���� ���� ���������

	
 ����
� ���
�
�
��� ��� ������
����
���� ��� ����� �� ����
��� ��� ��
��� ����� ���
�����

��
��

�
 �������
�
��� ��� ���
��
�� ��� ����� ��� ��
� ������
�� �� ���� �� ��� ���
����
���� ��� �����

���� ��
������� ��� ����
��� ��� ���� ���� �� ������� ���� ���

!����
� ��� ���� ��� �� ��� ����
� ��� �
��� �
�
 "������ # $�%�����
� �
�� ��� �� ����
��� ��

������� ��� ����
��� ��� ���� �
�� ������ �� ����� ���
��
�� ��� ����
 ��� ��
� ������
�� ��

���� �� ��� ���
����
���� "������ ���� �� ���� ���� �� �&��� �� $�%���� ' �����
� �����

�� ����� ���
��
�� �� �������

(
 ���� ����
�
�� �����
�
�� �%������ ������ ���� ���
��
�� ������

)�
 !� �� ���
�
���� ����� �� ��� �%������ �������
� ��
�
����
���
� ��� ���� ���� ���
��
��

���
��� ��� ����� �
�� ��� �
�� ��� �����
� � �������

)�
 !� �� ���
�
���� ����� �� ��� �%������ ������� ��
�
����
��� ������ ��
�� �� ���� �����

���
��
�� ���
��

*
 �������
�
�� ��� ����
�
 � ����� ������
��
 +������ �
��
�� ��� ���� �
�� ���� �
��� ��� ���� ��

���� ��� �� ��� ���� ��� ������ ������ ��� ������ �����
� �������
 ,� ���
�� ��� �
��
�� �� ���

����� "������-
�������� �� �� �&��� �� "������ . ������ ��� �����
� ��� ���� ����� ����

�
�
��� ����
�
 �� ��� ��� ��� ���� ����� ��� ����
���� ���
� ��� ���� ��� ������� ���
�
 ,�

���
�� ��� �
��
�� �� ��� ���� "������- ���� ��
������� �� �� ������� ���� "������ . ������

��� �����
� ��� ���� ����� ����� ������
���� ������
�� ����
����
� ��� ����

��� ��� ����
�
 ��
�� ������
�� �� ���� �� ��� ���
����
���� "������-� ��� ���� �� ���� ��� ��

��� ���� �����&���� �� ���
��
�� ������� �� ��� ��� �� ��� ��� ����� ���� �� ���� ����

����
�
�� ���� �� ����

/
 ��������
�
�� �����
�
�� �%������ ������ ���� ����
�
 ��
�� ������
�� ������

0
 !� �� ���
�
���� ����� �� ��� �%������ ������� ,�����1 ���� �� ����� ���� ,�����- ��

�����
��
�� �
�� �����
 ,� ��� ���� �� ����
� �
�� ������ �� ����� ��� ����� �� �
�� 2,�����-3�
�

�
�� ���� �� �� ������� �� ����
�
 � ��� ����� ��� ������� �����
��
�� 2,�����13

4
 ��������
�
��� ������ 1"51 ������� �� �
���� ���������� �������
�� �� ��� ����

8 An alternate approach is to allocate each use case step one row and combine all its associated
preconditions, postconditions, and invariants on that one row.

Step 4. Build Test Cases

The final step of the Extended Use Case Test Design Pattern actually
involves two tasks:

1. The selection of test points: values to be used for inputs and state vari-
ables in test cases. The Extended Use Case Test Design Pattern calls for
two types of test points:

a. Valid test points: for a model-based specification, this
involves test points where all preconditions and invariants
are satisfied.

b. Test points that should cause a failure: for a model-based
specification, this involves test points where at least one
precondition/invariant fails. This is essentially a test of the
software’s error-handling capability.

2. The creation of test cases using the selected test points.

The next two sections look at these tasks in more detail.

Select Test Points

In our operational relation of Figure 6.4, we have three independent vari-
ables for which we need to select test points: InFlow, OutFlow, and
OutFlow'. Remember, the independent operational variables are the ones
not defined in terms of other operational variables, so they are the source
of variation for testing purposes.

As noted previously, preconditions are a good source from which to select
test points for an independent variable. But a variable may be constrained
by several preconditions in a use case scenario: the valid test points we
identify must simultaneously satisfy all preconditions that constrain a vari-
able as well as its domain definition.9 Figure 6.6 illustrates a straightfor-
ward, low-tech approach you can use to identify such test points.

TRIPLE THREAT TEST DESIGN FOR USE CASES 209

9 In software testing, the process of selecting test points from an input’s or state variable’s domain
by analyzing constraints on the variable is called domain analysis (Binder 2000).

Figure 6.6 Valid test points for a variable must satisfy its domain definition and all preconditions in the use
case that constrain it.

In the table in Figure 6.6, the independent operational variables for the use
case are listed across the top as columns. The domain definition (the set of
all possible values) for each variable is listed in the first row of the table
(refer to section “Step 2. Define Domains of the Operational Variables”). In
subsequent rows, any preconditions that further constrain the values of
each variable are listed. Finally, for each variable the final row shows the
subset of the domain—called a subdomain—that meets all the precondi-
tions in a column. This is arrived at by simple visual inspection looking for
the “lowest common denominator” for each column, so to speak. That sub-
set, or subdomain, is then entered in the last row of the column.10

It is the last row of the table in Figure 6.6 from which test points for InFlow,
OutFlow, and OutFlow' should be selected. The table in Figure 6.7 shows
test points (rows) to be used for valid and failure scenario test cases select-
ed from each variable’s subdomain (columns).

The test points of the table in Figure 6.7 were selected using the “1×1” or
“one-by-one” domain testing strategy.11 For the variables of Figure 6.7, each
subdomain has two boundaries: a lower bound and upper bound. The one-
by-one strategy calls for two test points per boundary: one that is valid and
one that should cause failure. For the example here this results in a total of
four test points per variable.

210 CHAPTER 6

Independent Variables

In
F

lo
w

O
ut

F
lo

w

O
ut

F
lo

w
'

Domain definition

Precondition-1

Precondition-2

Subdomain satisfying
all preconditions

0 ≤ InFlow ≤ MaxFlow

n/a

n/a

0 ≤ InFlow ≤ MaxFlow

0 ≤ OutFlow ≤ MaxFlow

OutFlow ≤ MaxFlow – Delta

n/a

0 ≤ OutFlow ≤ MaxFlow – Delta

0 ≤ OutFlow' ≤ MaxFlow

OutFlow' < OutFlow + Delta

n/a

0 ≤ OutFlow' < OutFlow + Delta

10 Rather than building a separate table, in “real life” you might do this directly from inspection of
the operational relation itself as it is the source of domain definition and preconditions for the
table. The table in Figure 6.6 is constructed here primarily as an aid to the reader, helping to focus
on just the parts of the operational relation that are pertinent.
11 The Extended Use Case Test Design Pattern does not suggest a particular test point selection
strategy other than that test points should include valid test points and test points that should
cause failure. The one-by-one strategy certainly meets this criterion. See Binder (2000), particular-
ly the “The One-By-One Selection Criteria” section.

Figure 6.7 For the upper and lower boundary of each variable’s subdomain, two test points are selected:
one that is valid and one that should cause a failure. Flow rates are stated in Gallons Per Minute
(gpm).

Use Test Points in Test Cases

The final task of the Extended Use Case Test Design Pattern is to use the test
points of Figure 6.7 in actual test cases, including expected results.
Expected results for valid test points can be determined using the opera-
tional relation of Figure 6.3 or Figure 6.4.

For test points intended to cause failure, the operational relation would
need to be extended to cover each failure scenario. For the sake of brevity,
such an extension is not shown here, although it is assumed such an exten-
sion is available as a basis for determining the expected results of the fail-
ure test points.

While valid test points can be combined into the same test case, test points
intended to cause failure typically require a test case of their own. Hence,
as is clear from the table in Figure 6.7, the chemical tank use case requires
six different test cases to cover each of the six failure scenarios identified.
Briefly, the failure scenarios are as follows:

• Failure Scenario 1—Backwash in the InFlow valve when use
case starts (i.e., InFlow is negative)

TRIPLE THREAT TEST DESIGN FOR USE CASES 211

Test Points for Independent Variables

In
F

lo
w

O
ut

F
lo

w

O
ut

F
lo

w
'

Lower bound

Upper bound

0 ≤ InFlow ≤ MaxFlow

InFlow = 0 gpm (zero)

Failure: InFlow < 0
InFlow = –10 gpm

0 ≤ OutFlow ≤ MaxFlow – Delta

OutFlow = 0 gpm (zero)

0 ≤ OutFlow' < OutFlow + Delta

OutFlow' = OutFlow

Failure: OutFlow < 0
OutFlow = –10 gpm

Failure: OutFlow' < 0
OutFlow = –10 gpm

Failure: InFlow > MaxFlow
InFlow = MaxFlow + 10 gpm

OutFlow' = 0 gpm (zero)

InFlow = MaxFlow OutFlow = MaxFlow – Delta

Failure: OutFlow > MaxFlow – Delta
OutFlow = MaxFlow

Failure: OutFlow' ≥ OutFlow + Delta
OutFlow' = OutFlow + Delta

Lower bound

Upper bound

Subdomain satisfying
all preconditions

Fa
ilu

re
V

al
id

Te
st

 P
oi

nt
s

Test points having been selected, they now need to be incorporated into
test cases.

• Failure Scenario 2—Initial InFlow is too high at start of use
case

• Failure Scenario 3—Backwash in the OutFlow valve when use
case starts (i.e., OutFlow is negative)

• Failure Scenario 4—Initial OutFlow at start of use case is so
high that tank can’t be refilled at rate Delta without raising
InFlow’ past the MaxFlow rate

• Failure Scenario 5—OutFlow' is set to be negative (backwash)
after refilling begins but before target level is reached

• Failure Scenario 6—OutFlow' is increased to be ≥ OutFlow +
Delta after refilling begins but before target level is reached

Figure 6.8 shows a table of test cases in the style of the Extended Use Case
Test Design Pattern with one test case per row. Shown are two valid tests of
the main scenario and six failure scenario tests. Blank cells indicate that the
value of the corresponding variable is irrelevant; Binder uses “DC” (Don’t
Care) for this purpose. Footnotes (none shown) would provide additional
explanation to the tester on test setup, execution, and expected results,
including preconditions and invariants to be aware of and/or monitored.

With test cases in place, the Extended Use Case Test Design Pattern is
complete.

212 CHAPTER 6

Figure 6.8 Table of test cases in the style of the Extended Use Case Test Design Pattern.

Closing Thoughts

Remember that in the last chapter I talked about Blue Collar Formal
Methods, my concept of scaling down a formal method to something easi-
er to learn and use that still affords a little rigor, but with little or none of the
math.12 With just a few simple extensions to Binder’s operational relation

TRIPLE THREAT TEST DESIGN FOR USE CASES 213

Independent Variables Expected Results

Te
st

 C
as

e
F

oo
tn

ot
es

InFlow

Inflow = 0

Inflow = Maxflow

OutFlow

OutFlow =
MaxFlow – Delta

OutFlow = 0

Delta

Delta > 0

Delta > 0

InFlow'

Inflow' = Maxflow

Inflow' = Delta

InFlow"

InFlow" = OutFlow =
MaxFlow – Delta

InFlow" = 0

Status/Action

OK

OK

OutFlow'

OutFlow' = OutFlow =
MaxFlow – Delta

OutFlow' = 0

–

–

Main
Scenario

Valid Test 1

Main
Scenario

Valid Test 2

V
al

id
 T

es
ts

Failure: InFlow < 0

Set InFlow = –10 gpm

Failure: InFlow >
MaxFlow

Set InFlow = MaxFlow
+ 10 gpm

Failure: OutFlow >
MaxFlow – Delta

Set OutFlow –
MaxFlow

Failure: OutFlow < 0

Set OutFlow =
–10 gpm

Delta > 0

Delta > 0

Inflow' = 0 InFlow" = 0

Raise alert. Seal
InFlow & OutFlow

valves to stop
backwash. Signal
manufacturing to

stop.

OutFlow' = 0–

–

Test Failure
Scenario 1

Fa
ilu

re
 S

ce
na

rio
s

Test Failure
Scenario 2

Test Failure
Scenario 3

Test Failure
Scenario 4

Test Failure
Scenario 5

Test Failure
Scenario 6

–

–

–

–

OutFlow' = 0

OutFlow' = 0

OutFlow' = 0

Failure: OutFlow' < 0

Set OutFlow' =
–10 gpm

Failure: OutFlow' ≥
OutFlow + Delta

Set OutFlow' =
OutFlow + Delta

Delta > 0

Delta > 0

Delta > 0

Delta > 0

Inflow' = 0

Inflow' = 0

Set Inflow' = 0

Inflow' = OutFlow +
Delta

Inflow' = OutFlow +
Delta

InFlow" = 0

InFlow" = 0

InFlow" = 0

InFlow" = 0

Set InFlow" = 0

Raise alert. Stop
flow into tank. Signal
manufacting to stop

(which controls
flow out of tank).

Raise alert. Seal
InFlow & OutFlow

valves to stop
backwash. Signal
manufacturing to

stop.

Raise alert. Stop
flow into tank. Signal
manufacting to stop

(which controls
flow out of tank).

Raise alert. Stop
flow into tank. Signal
manufacting to stop

(which controls
flow out of tank).

Raise alert. Stop
flow into tank. Signal
manufacting to stop

(which controls
flow out of tank).

12 See Chapter 5, the “The Absolute Least You Need to Know: One Fundamental Lesson and Three
Simple Rules” section.

decision table concept, you have what makes for a decent Blue Collar
Model-based Specification of a use case, namely:

• Use of unprimed and primed state variables for operational
variables in the style of Figure 6.4 to raise visibility to state
change in the use case and allow you to talk about the before
and after versions of state variables when describing precon-
ditions, postconditions, and invariants.

• Expansion of the table format in the style of Figure 6.4 to
allow a row per use case step’s precondition, postcondition,
and invariant.

• Dispense with the math and instead describing your precon-
ditions, postconditions and invariants in natural language
while following the “one fundamental lesson and three simple
rules” from Chapter 5.13

The operational relation extended with a few tricks from model-based
specification is a winning combination not only for test design, but use
case analysis in general.

Chapter Review

The overall lesson of this chapter is that model-based specification, in
addition to being a good tool for use case failure analysis, is a good tool for
test design: any work done modeling the use case for failure analysis is eas-
ily translated into test cases. Here’s a review of the two major sections of
this chapter.

In the first section, you learned why preconditions, postconditions, and
invariants, taken as a unit, are a veritable triple threat test case for black-
box testing:

214 CHAPTER 6

13 Again, see Chapter 5, the “The Absolute Least You Need to Know: One Fundamental Lesson and
Three Simple Rules” section.

• Preconditions are an ideal source for test point selection both
in terms of valid and failure scenario test cases.

• Postconditions provide the all important primary expected
result.

• Invariants provide a crosscheck on the expected result of the
postcondition or can act as a “better late than never” precon-
dition if a precondition is not available. Plus, global invariants
have the added benefit of being both a precondition on
steroids and a mini test case that can be executed anytime,
anywhere in the use case.

The second section reviewed Binder’s Extended Use Case Test Design
Pattern, a method of specifying test cases from a use case by modeling the
use case as a relation described via a decision table, called an operational
relation. You also learned that model-based specification can be used as a
relational description of a use case and is easily translated into the decision
table format of an operational relation. This approach—a model-based
specification-style operational relation—coupled with an expanded table
format, has a number of benefits:

• The workflow nature of a use case is preserved, which is
handy for testing.

• The overall combination of a test case described in natural
language augmented with a model stated in terms of precon-
ditions, postconditions, and invariants provides a test case
that is both understandable and rigorous.

• Use of unprimed and primed state variables allows you to talk
about the before and after versions of state variables when
describing preconditions, postconditions, and invariants.

• Preconditions, postconditions, and invariants are grouped in
such a way to make evident their “team” structure and the use
case operation or step they are describing.

TRIPLE THREAT TEST DESIGN FOR USE CASES 215

This page intentionally left blank

Calculating ROI and Leveraging in Project
Portfolio Management

“If by…negligence, one withdraw from them their ordinary food,
he shall be penny wise, and pound foolish.”

—Edward Topsell, The History of Four-Footed Beasts, 1607

The role of Configuration Management (CM) in quality is so fundamental
that it’s easy to overlook. But it’s pretty easy to imagine—or as the case may
be, remember—scenarios in which CM failures directly affect the quality of
products. CM is important enough that it is in the foundational layer—a
Level 2 Key Process Area (KPA)—of the Capability Maturity Model.

Briefly put, the role of CM in quality management is

• Building a product with the right parts, assembled in the
right way.

• When correctly assembled, controlling change to prevent, or
at least minimize, introduction of defects.

217

Part 4

Use Case Configuration
Management

In addition to its importance in the Capability Maturity Model, configura-
tion management also plays an important role in many of the newer devel-
opment methodologies. McCarthy’s (1995) philosophy of software devel-
opment includes development rules, such as Rule #32: If you build it, it will
ship and Rule #33: Get to a known state, and stay there, which put CM cen-
ter stage in development. And Alistair Cockburn remarks that software
configuration management tools are one of the tools most critical to the
success of the agile project (Hass 2003).

While we naturally associate CM with source code, its scope includes many
other work products and deliverables of the project (e.g. release notes, user
manuals, installation instructions, and even the tracking of defects, both
resolved and unresolved). And lest we forget, CM most definitely applies to
use cases! Leffingwell and Widrig (2003) discuss the benefits of require-
ments management based on a CM approach, what they call “require-
ments configuration management,” or as it applies specifically to use cases,
use case configuration management.

Although CM does not necessarily imply tool support, if your projects and
products are of any significant size, manual CM is typically not practical.
But while there is no shortage of available commercial CM systems, using
these tools to support the CM of requirements, and specifically use cases,
is a newer concept for many companies. As Leffingwell and Widrig (2003)
have noted, even organizations that have rigorous CM of source code are
often lacking in CM of requirements such as use cases. Given the impor-
tance of requirements and the high cost of fixing defects in them, are such
companies “penny wise but pound foolish” in avoiding the IT expense,
training, and process needed for more rigorous use case configuration
management?

In this part of the book, we are going to look at tool support for CM of use
cases, ask whether it makes sense for your company, and see a powerful
way to leverage it if you have it.

In Chapter 7, “Calculating Your Company’s ROI in Use Case Configuration
Management,” you will learn about some of the benefits of tool support for
use case CM, couched in terms of a Return on Investment (ROI) model. You
will learn about:

• A common method for calculating the Return On Investment
(ROI) for IT investments.

218 PART 4

• A model you can use as a starting basis to evaluate your com-
pany’s ROI in tool support of use case CM.

• Typical sources of cost associated with the introduction and
use of a tool for use case CM.

• How to estimate the savings for your company due to reduc-
tion in operating expenses (e.g., daily time savings and
eliminated rework) due to the introduction of a tool for use
case CM.

In Chapter 8, “Leveraging Your Investment in Use Case CM in Project
Portfolio Management,” you’ll learn more ways that tool support of use
case CM can benefit your company. You will:

• Learn how to leverage your company’s investment in use case
CM to provide metrics and reports for what could well be the
most far-reaching, single process improvement possible in
your company: Project Portfolio Management.

• See how to leverage some simple use case-based metrics to
evaluate whether or not your portfolio of projects is reason-
able given your company’s limited development resources,
evaluate the mix of strategic project types in the project
portfolio, and track the status of large numbers of projects in
the portfolio.

USE CASE CONFIGURATION MANAGEMENT 219

This page intentionally left blank

There is no question that a commercial requirements management tool is
useful for use case management, but can it pay for itself at your company?
This chapter looks at a model to help you calculate the return on invest-
ment (ROI) on requirements management tools for use case management.
Not only will it help you decide if such tools make sense for your company,
it also helps illustrate some of the problems CM of use cases is meant
to address.1

Overview of ROI

ROI is a popular method of measuring the success of process improve-
ments and IT investments. It is a measure of the dollars returned on dollars
invested. And as Payne (1999) points out, ROI is an effective approach for
arguing the need for, or demonstrating the success of, process improve-
ments and IT investments.

221

7

Calculating Your Company’s
ROI in Use Case

Configuration Management

1 See Hass (2003), particularly the “Calculation of Profitability” section of Chapter 5, “Scoping the
Configuration Management Task,” for an overview of configuration management ROI in general.

Though there are a number of methods of calculating ROI, one straightfor-
ward, simple to understand method is the Benefit to Cost Ratio, which sim-
ply divides the benefits in dollars of process improvement or IT investment
by the costs.

Benefit to Cost Ratio = Benefits / Cost

So, a Benefit to Cost Ratio of 3 would mean that for each dollar spent on the
cost of process change and IT, three dollars in benefits were realized.

In doing an ROI assessment, typical sources of cost include:

• Initial IT investments

• Training staff in new processes and IT tools

• Consulting needed to assist process change and IT installation

• Recurring cost associated with new process and IT, for exam-
ple maintenance

Typical benefits that are considered in an ROI assessment include:

• Increased revenue (e.g., increased sales or sales margins)

• Retention of sales that would otherwise have been lost

• Reduction in operating expense (e.g., daily time savings and
eliminated rework)

In this chapter, we’ll look at how to do a Benefit to Cost model for process
change and IT investment of putting a requirements management tool in
place in your company. Although this model was developed with the roll-
out of a commercial tool in mind, it should be readily adaptable to devel-
opment and rollout of “home grown” tools.

222 CHAPTER 7

Requirements Management Tools

Requirements management tools are to use cases what defect tracking
tools are to defects. They provide an environment for, and database
approach to, managing large numbers of use cases related in potentially
complex ways (traceability), over time, across projects, through staff
changes and company reorganizations. They are a corporate memory for
requirements.

In a project setting, a requirements management tool is used in a number
of contexts:

• Planning the scope of a release or a series of releases (key in
iterative, incremental projects)

• Managing plan execution: who is responsible for what, when

• Tracking project status

• Change control of scope, particularly in evaluating the impact
of proposed changes (this is where traceability of require-
ments is critical)

For a large company, dealing with thousands of use cases (in support of, for
example, enterprise-wide project portfolio management; see Chapter 8,
“Leveraging Your Investment in Use Case CM in Project Portfolio
Management”) moving to a database approach to requirements manage-
ment allows a metrics-based style of managing use cases that is simply not
practical with paper document-oriented approaches.

Calculating the ROI

Again, there is no question that a requirements management tool is very
useful; but can it pay for itself at your company? The ROI model presented
here provides specific improvements you might expect from installing a
requirements management tool, and then tries to quantify the benefits

CALCULATING YOUR COMPANY’S ROI IN USE CASE CONFIGURATION MANAGEMENT 223

from that perspective. The model is loosely based on one originally devel-
oped for a company of about 500 R&D staff rolling out a commercially
available product; the ROI assessment was done about 1.5 years into the
rollout.

Keep in mind that the costs and savings presented here are just examples
and not meant as an indication of what such an effort would cost or save
your company. The main point of this chapter is to describe how to go about
building an ROI model for your company, not to analyze the results of a par-
ticular case study.

Conventions and Starting Assumptions

I’ll begin by making a number of starting assumptions and noting some
conventions that will be used throughout the ROI model. The model is
implemented as a spreadsheet. Formulas will not be shown: most are
straightforward and it is hopefully obvious how the calculations are being
done; showing them would add clutter and confusion.

There are a number of parts of the model which are highly subjective
and/or will vary by company, industry, and so on. These parts of the model
are marked with gray cells. The end of this chapter includes suggestions for
dealing with this uncertainty.

Assumptions About Cost of a Fully Burdened
Employee

We need to begin the ROI model by calculating the cost of a fully burdened
employee per work day, per hour, and per minute as shown in Figure 7.1.2

By “fully burdened” we simply mean the total cost to the company: salary +
total benefits. As a rule of thumb, the fully burdened cost of an employee
(i.e., salary plus health insurance, vacation, holidays, sick leave, taxes paid
by employer, and so on) is usually about 1.5 times salary.

224 CHAPTER 7

2 All dollar amounts in this model, both for costs and savings, are shown in US currency.

Figure 7.1 Cost of fully burdened employee by day, hour and minute.

Initial Actual Data about Use Cases

Next we capture some actuals in terms of numbers of use cases that were
entered into the requirements management tool as of the date of the ROI
assessment; in this case, about 1.5 years after initial rollout (see Figure 7.2).
Of the approximately 5,000 use cases entered, about 1,000 had already been
implemented and shipped as part of some project and some 200 had been
rejected, meaning that a decision had been made that these use cases
would never be addressed in any future release.

CALCULATING YOUR COMPANY’S ROI IN USE CASE CONFIGURATION MANAGEMENT 225

$ 120,000

230

$ 522

$ 65

$ 1.1

Average fully burdened cost per employee per year

Work days per year

Employee cost per work day

per hour

per minute

5000

1000

200

3800

Use Cases entered to date

Use Cases implemented thus far

Use Cases rejected

Use Cases remaining open for future projects

Figure 7.2 Use cases entered, implemented, rejected, and remaining open.

The Cost

An ROI assessment must be done for some fixed period of time; both the
cost and the benefits must be calculated for the same fixed period. The
costs presented here reflect those about 1.5 years into the rollout of a new
requirements management process and tool.

Cost of Tools, Training, Consulting, and Rollout Team

The most obvious cost of any IT rollout such as this is the cost of the soft-
ware, hardware, cost of outside consultants, plus the impact to your staff in
terms of training classes, staff dedicated to the rollout, and so on.

Figure 7.3 shows the calculation of the cost of the tool and process rollout.3

226 CHAPTER 7

Software

Training

Consulting

Rollout Team Time

$ 45,000

�

� �����

��

�

���

������

$ 166,265

$ 25,000

�	��

�	��

�	��

�	��

$ 99,000

��
�� ��� ������ ��������� ���� ����������� �� ����

������ �� �������� �������

���� ��� ����� ��������� ���������� ��������� ������ ������ ���� ���	

������ �� �������� ��� �����

 ������� �� ����� �� ��!�

"���! �������� ���� ��� ��! ��� �����!��

#���� ��� �����

#���� ��� ��� �������

$�%���� ������� ��!��� �������� �������

&������ !���� �� ������� �� ����

������ �� ����� '��(��� �� ��) ���� �� ��� �������

������ �� ����� '��(��� �� ��) ���� �� ��� �������

���� !���� �� ������

#���� ���� ��� ������� ����

Figure 7.3 Cost of software, training, consulting, and rollout team.

Item Consulting refers to on-site support beyond classes: additional sup-
port needed to aid in the rollout of the tool and process. Item Rollout Team
Time refers to a core set of staff that spends a portion of its working time in
support of the process and tool rollout.

Cost of Tool Use Overhead

Another cost accounted for in the model is tool use overhead (see Figure
7.4). Just as the proper entry of a defect into a defect-tracking tool requires

3 This is not meant to be an exhaustive list, but rather an example of the types of things you need
to account for.

some time, the proper entry of use cases into a requirements management
tool requires more time than, say, a capture on the back of a napkin or Excel
spreadsheet. As noted above, gray cells are ones where the values entered
are highly subjective, tool use overhead certainly being one.

An objective approach for determining a number such as this is to perform
usability studies. This was not done in this case, however, and I suspect that
most software development organizations don’t have the staff, facilities, or
inclination to do such a study.

In this particular case—as with many of the subjective parts of the model—
I found that a straightforward approach was to poll staff that were using the
tool and ask them how much additional time they felt they spent due to tool
use overhead. After talking with a number of people, a good average num-
ber will hopefully emerge.4

CALCULATING YOUR COMPANY’S ROI IN USE CASE CONFIGURATION MANAGEMENT 227

Tool Use Overhead ��

����

�����

$ 81,522

������	
 ��
	�� ����
��� ��� ��� �	��
� ���
��
��� �����

��	
 ����
 ��
��� �� �	� ������ ���
� 	�
 �� ���

 �� �	��� ��
���

�
	
�

!
	�� ����
��

"�
	�

Figure 7.4 Cost of tool use overhead.

Cost of Added Review and Rigor

Finally, we account for the added review and “rigor” in use case manage-
ment that we are asking teams to effect (see Figure 7.5). For example, use
cases that would otherwise be recorded on a white board in an office or
someone’s laptop are now entered into a public repository. This increase in
easy-to-access use cases leads to additional review, discussion, test plan-
ning, change control, and so on.5 The cost of doing the job right is, never-
theless, a cost, and is captured in the ROI model here.

4 Additional suggestions on dealing with these subjective values are given at the end of this
chapter.
5 Note that the model assumes that use cases are being written somewhere one way or another, so
the cost being estimated here is not that of writing a use case, but rather the cost of the increased
activity that surrounds a use case because it is now publicly available.

Figure 7.5 Cost of added review and rigor.

Again, this is a very subjective value. How can we hope to get a ballpark
number for the additional time that is being spent by staff because use
cases are now publicly accessible?

In Ed Weller’s “Calculating the Economics of Inspections,” he states that the
recommended rate for preparation for and actual inspection of a require-
ments specification is about seven pages an hour.6 This seems a reasonable
heuristic for estimating the average cost of additional review and rigor on
use cases that were actually implemented.

The model divides the use cases into those that were implemented and
those not yet implemented. For those implemented, let’s assume that one
use case is, on average, equivalent to about five pages of text.7 Of the use

228 CHAPTER 7

����� ������ ��� ��	
� ����

����

�

��� ����� 	
���
�
���

��
��� �� ����� ����� �
 �	�� ����� ��� ��� ����

����� ���	���� ��� ���� ��� �����

�

����

�
�
����

����

����

�

���

� ���
��

�
������

��
��� �� �����
� �
 � ���
 ���� ��� � ��� ���� ���

�	����	�
 	
 ���	� ���� �� ���
� �������� ����� ������� ����

����
�
���	�
� �
� ���	
	
�
����	���� �
� �� �

!���� �����

"���

��� ����� �
������ ���
�� 	
���
�
���

��
��� �� ����� ����� �
 ��� ����� ��� ��� ����

����� ���	���� ��� ���� ��� ����
 ��� �����
�� �����
��#

��	
� 	
���
�
��� ����	�� ���� �����	
#� �� �� ������
��

��
��� �� ������ �
 � ���
 ���� ��� � ��� ���� ��� �	����	�

	
 ���	� ���� �� ���
� �������� ����� ������� ���� ����
�
��	�

�
� ���	
	
�
����	��� �
� �� �

!���� �����

"���

$���� ��� ����� ���	�� �
� �	���

6 This is not the writing of the document. “Preparation” here refers to the time spent by the team
before the actual inspection begins (e.g., reading the document and recording questions and
issues).
7 IBM Rational’s RUP Director Per Kroll as “Dr. Process” fields various questions put to him on the
IBM Rational Web site. In response to the question “How long should a use case description be?”
Dr. Process responds, “…a use case description that covers all the alternative flows of events typi-
cally ends up being two to five pages long…”. My personal experience backs this up as a good aver-
age, but ultimately for this model you need to use a number that works for your company.

cases not yet implemented, many are likely to be much shorter, some sim-
ilar in length to Extreme Programming (XP) stories (an XP story is supposed
to fit on an index card). For these, we’ll assume that a use case is on aver-
age about two pages. Additionally, the use cases that were entered, but not
implemented, receive much less scrutiny (they are on the backburner, so to
speak). We’ll model these as receiving one-tenth of the effort, or a factor of
10 increase in speed at which they are reviewed.

The Benefits

Now we’ll move to calculating the benefits of managing use cases with a
requirements management tool. Of the categories of benefits discussed
previously, increased or retained sales and reduced operating costs, the
model will focus solely on reduced operating costs for the company. This is
fairly common for most IT investment ROI models. In the case of a require-
ments management tool, one could probably make an argument that
increased sales, or at least retention of sales, are realized due to increased
customer satisfaction resulting from better requirements management.

Savings from Staff Working more Efficiently

We begin by calculating the savings realized from staff on projects having a
readily available, always up-to-date, common source of use cases upon
which they can base their work. It is a cost reduction from staff working
more efficiently to plan, develop, test, document, and develop training
materials for a product (see Figure 7.6).

CALCULATING YOUR COMPANY’S ROI IN USE CASE CONFIGURATION MANAGEMENT 229

����

�

���

�����

� �������

��� 	
��� ��
��������

������ ��
��
�� ��
 ��
� ��
� ���
 ��� 	
�� ��� ����	���� �� ����� ����

���� �
��� �� ������
��
������
�� ��� 	
��� ��	
��� ���� �
��

��	������� ��� 	
��� ��
����
�
��
��� ��
 	��

������� ��
������� �
��
���	� ���� 	
� �
�� ����� ����

���
� ����� �� �
���� ���
�� ��
��

���
� �
�����

Figure 7.6 Savings from staff working more efficiently.

Scenarios where inefficiencies occur when use cases are not readily avail-
able to staff include:

• Use cases exist only in Joan’s head, so each and every staff
member that needs that information to plan tests or write a
user manual makes a trip to Joan’s office

• Use cases are recorded on Joe’s laptop, but Joe is at the client
site for the next two weeks

• Bob writes the user manual based on the woefully outdated
hardcopy of use cases he has on his desk, requiring significant
rework later

Note that this part of the model is not about doing a better job; it’s about
doing the same job more efficiently.

This is, again, a highly subjective number, objective numbers being diffi-
cult to come by. In talking with staff members that were using the tool, all
agreed there was a savings in time, but how much varied. One way to use a
model such as this one is to pick a number that is so low that everyone
automatically is willing to buy into it, and then use the model to show how
even that little savings translates into big dollars accrued over large num-
bers of use cases and staff. As illustrated here, just a savings of 1.5 hours
(representative of responses I got from staff) per team member adds up to
large savings.

Savings from Avoiding the Cost of Lost Use Cases
from Staff Churn

Staff churn is a common problem for maintaining project consistency over
time. Staff members quit the company; staff members move to other proj-
ects or are promoted; whole projects get re-staffed through company reor-
ganization. When use cases are not recorded and managed in a company-
wide system, they are subject to loss due to staff churn. The loss means that
the use case must be “rediscovered” and re-engineered again and again.
Figure 7.7 models the savings in avoiding the cost of lost use cases due to
staff churn based on 12% staff churn per year reported by some HR groups.

230 CHAPTER 7

Figure 7.7 Savings from avoiding lost requirements.

And of course, staff churn is only one way in which use cases can be lost
over time if not under some formal means of configuration management.
Use cases recorded on white boards are erased; use cases recorded on lap-
tops are lost when the laptop is stolen; use cases, like socks in a dryer, can
just disappear!

Savings from Avoiding Cost of Unnecessary
Development

One of the benefits of a company-wide requirements management tool is
the increased visibility that use cases receive. The people on various proj-
ects are able to see what others are doing; redundancy, conflicts and mis-
understandings are spotted; and priorities are better managed. The result:
use cases get rejected! This leads to a cost savings in avoiding work on use
cases that are rejected due to increased visibility in the company (see
Figure 7.8).

CALCULATING YOUR COMPANY’S ROI IN USE CASE CONFIGURATION MANAGEMENT 231

����

� ���� ���

��� �����

��	��
� �
���
����
 �� ���� �� ��� � �	����
����

���� ���
��� �
���
�������� ��
 ������� �� ����� ����

��	���� ����� ���	������
� �� ���	� �� ����� ������ ��
���	� �� 	����	�
����

����
��� ��
��	 �� ��� ����� ���� ���� ��	���� ��� �	�� � ��
 �	� ����
��
�� ����� ���	� ��
 ����	 ������

!����
��� �� 	�"�������	��� ���� ��� ���������� ����
 �� � ���� ����	�
��	 ��
�

#���� �����
��� �� $�	 	�"�������	��� ���� ��� �����

#���� % ��&����

�'�

�(�

)

����

$ 521,739

200 Use cases that were rejected

Percent of these, which, had they not been recorded and subsequently
rejected, may have gone forward

Use cases that may have gotten implemented

Total staff days spent implementing the use case: Coding, testing,
documentation, and so on

Total staff days for all unstopped use cases

Total $ savings

25%

50

20

1000

Figure 7.8 Savings from avoiding cost of unnecessary development.

Savings from Reducing the Cost of Requirements-
Related Defects

Finally, let’s look at the cost savings in terms of fixing requirements related
defects. For this part of the model, we’ll use a few concepts also used in
doing inspection ROI assessments (Weller 2002). We’ll do this by:

1. Building a baseline model of what we believe was the cost of defect
detection and removal before we added the new process and require-
ments management tool

2. Recalibrating the baseline model with improved defect detection and
removal, the cost of which we paid for as Added Review & Rigor men-
tioned previously (refer to Figure 7.5)

3. Calculating our cost saving by subtracting the cost of baseline-2 from
baseline-1

In the following, a “requirements defect” is a defect in the use case itself,
either of commission (e.g., the use case said “X” but should have said “Y”)
or omission (e.g., the use case didn’t say anything about “X” but very well
should have).

It’s almost an industry cliché that the later a defect is found in the develop-
ment life-cycle, the higher the cost to fix. The relative amount of the
increase varies from industry to industry. Here I use a simple three-phase
defect-removal model:

• Removal of requirements defects anytime before coding (peer
review, analysis)

• Removal of defects after they are committed to code (unit
test, system test)

• Removal of defects after they are released to the customer

232 CHAPTER 7

The relative cost of fixing defects will be 1 staff day, 5 staff days, and 25 staff
days, respectively, an increase of a factor of 5 from phase to phase, well
below averages that are cited in the literature.8

Baseline Estimate: Cost of Requirements Defects
without Tool Support

Now let’s look at the model. We start by estimating the number of require-
ments-related defects (see Figure 7.9). Unless we are willing to acknowl-
edge the possibility of a perfect use case, it’s safe to assume that all the use
cases have at least one defect, on average. If you are not comfortable with
that assumption, adjust the percent as needed.

CALCULATING YOUR COMPANY’S ROI IN USE CASE CONFIGURATION MANAGEMENT 233

8 The larger the factor increase, the better the ROI in this model. A factor 10 increase in cost from
phase to phase is commonly cited in the literature, but a factor of 5 is closer to the case study
this model was built from. You will need to use numbers that make sense for your company and
industry.

���� ��� ����� ��	
������

���������� �� ��� ����� ���� ������

� ���� ��
���� ���
���������

���� ������
 ������ �� ������������
������

Figure 7.9 Estimating number of requirements-based defects.

Next, we estimate the number of requirements-related defects removed
prior to commitment to code and the associated cost (see Figure 7.10). A
removal effectiveness of 50% means that of the total population of defects,
50% were caught and fixed. We’ll assume that, on average, a defect at this
stage can be found and fixed in one staff day; changes that don’t involve
code are simply cheaper to make.

��� ������	 �

���
������
�� ��
� ����� ����� �� ��		����
������� �������

����
������� ��	���� ��
���� ����������

� ���

 ���� �������� ��

�� ���

� ��� ��
��� �� ��
� �����

���� ��
��� ������	 ��
��� ��
���� ��� ����
���� �� ����� � �!"#�

Figure 7.10 Cost of requirement defects removal prior to being committed to code.

In Figure 7.11, we estimate the number of requirements-related defects
removed from the code itself (e.g., unit, integration, and system test) and
the associated cost. The calculation starts with the number of defects that
remain undetected and unfixed from the previous stage. Because we are
now dealing with code, the cost of finding and fixing a defect rises from one
staff day per defect to five staff days per defect. Note that this is the total
cost in staff effort incurred, including testers, developers, and configura-
tion management.

234 CHAPTER 7

��� ������� ��	
����
 ��
� ���� �����
� �� ����

��	��
� ������������� ��� ���� ��

� �
��� �� �
���
�� ��������
���

����

��� �������	���� ���
��� ������� ��	����

��
�� �
�� �������� �� ����
�� ��� ��� ������
� ���� ��

�

� !��"!�#� $��� �� ������ ��	��
� ���	 ����! ����� �� ��		����
� ����
��

�

Figure 7.11 Cost of requirement defect removal from code.

At this point, let’s review the total defect removal effectiveness of the first
two stages (see Figure 7.12).

���� ����� ��	
�� �
 �������	���� ��
���� ���������

����� ��	
�� ��
���� ��	����
� �������� ��� ������
�
��� ����������

��� ��	
���� ��
��� ��	���� �

���������� �
 �������� ������

Figure 7.12 Defect removal effectiveness.

Defect removal effectiveness (DRE) is a measure of the effectiveness of a
development process to detect and remove defects.9 DRE = total defects
found and fixed, divided by total number of defects. In this case, we have
900 found and fixed (500 from Figure 7.10 + 400 from Figure 7.11) over a
total of 1000 to start with (Figure 7.9) for a DRE of 90%; an acceptable value
for the industry. The point of computing this is to make sure that our model
isn’t skewed with a low DRE, thereby resulting in an unusually high number
of the defects being caught in the last, most expensive phase of detection
(i.e., after release).

9 Refer also to the “Defect Detection Effectiveness” section in Chapter 4, “Reliability and Knowing
When to Stop Testing.”

Finally, we calculate the cost of defects shipped with the product to the cus-
tomer (see Figure 7.13). At this stage, “finding” the bug is not so much a fac-
tor in the cost; the customer does that for you! Now the cost of defects is
determined by factors such as customer support calls, loss of sales from
unhappy customers, and the increased cost to patch software in the field.
The cost of defects at this point varies greatly depending on the industry;
safety-critical products are an example of where the cost can be very high.

CALCULATING YOUR COMPANY’S ROI IN USE CASE CONFIGURATION MANAGEMENT 235

��� ������� ��	
����
 ��
� ���� �����
� �� ��� �����	��

��
�� �
�� �������� �� �������
�� ��� ��� ������
� ���� ��

���

� ��������� ���� �� �������
�� ��� ��	
����
 ������� �� ��� �����

Figure 7.13 Cost of requirement defect removal after product ships.

Our baseline cost—the cost before introducing a requirements manage-
ment tool and process—for finding, supporting, and fixing requirements-
based defects in use cases is $260,870 (Figure 7.10) + $1,043,478 (Figure
7.11) + $1,304,348 (Figure 7.13) = $2,608,696.

New Estimate: Cost of Requirements Defects after Tool
Support

Now we rerun the baseline, but with a 10% increase in defect removal effec-
tiveness at each of the first two stages (the third stage, where your customer
finds the requirements defects for you, will not benefit from improvements
due to a requirements management tool and process).10

So if our first phase of defect removal involved removing 500 defects (refer
to Figure 7.10), we would expect to find 10% more defects now (i.e., 550
defects removed). This works out to a new DRE of 55%: 550 found / 1000
total.11 The improvement in defect removal effectiveness is due to the
added review and rigor we paid for previously in Figure 7.5.

10 At least a 10% improvement is probably a reasonable expectation. Leffingwell (2003) uses a range
of 10% to 40%.
11 Notice that a 10% improvement in the DRE doesn’t translate into a jump from 50% to 60%. It’s
calculated as new-DRE = old-DRE + old-DRE×10%.

Figure 7.14 shows the new figures. The new cost of defect removal is now
calculated at $2,024,348; a cost savings of $584,348 over the old cost of
$2,608,696.

236 CHAPTER 7

����

����

����

�������	�
�� �	
��	�
���

�����
���� �� �������	�
�� ���� �
������� ���� �� ����� �
� ������

�
�����
�	��� �� �������	�
�� �������

���

���

�

� ��� !�"

��	���� ���������
��� ��� ���� ����� ����� �
 ����
��# �
������ �������

�������	�
�� ������� ������� ��	����

$���� ���� �%
�
�� �� ��
� �
� ��% �
� ������ �� ���� �����

&��� �� ������ ��	���� ������ ������� ��� ��		����� �� ����

'������ ��	��
�
� ���� ���
 ������� �� ����

��	���� ���������
��� ��� ���� ����� ����� �
 ����
��# �
������ �������

�������	�
�� ������� ������� ��	����

$���� ���� �%
�
��� �� ��
� �
� ��% �
� ������ �� ���� �����

&��� �� ������ ��	���� ���	 ����
���� �� ��		������ �������

(��

���

)!�

�

� � �)) �()

����

!(�

!��

*���
�	��� �� �������	�
�� ������� �
�������

*����
�	��� ������� ��	���� ��
������� �+�
����� ������ �������

&�	��
�� ������ ��	���� ���������
��� ��
������� ������

�(

��

� "�()(�

'������ ��	��
�
� ���� ���
 ������� �� ��� �����	��

$���� ���� �%
�
��� �� ��

��� �
� ��% �
� ������ �� ���� �����

&��� �� ��

��� �
� ��% ��	��
�
� ������� �
 ��� �����

,�+ ����� � ��()(�

���
�
������

���
�
������

Figure 7.14 Cost of defect removal after 10% improvement in defect removal effectiveness due to improved
requirements management tool and process.

Bottom Line: Benefit to Cost Ratio

All that is left is to tally the benefit to cost ratio. As shown in Figure 7.15, the
benefit to cost ratio for this particular case study—1.5 years into the tool
and process rollout—is 3.4 to 1, meaning that for every dollar spent you
estimate that 3.4 dollars were saved.

Recall that cost at this point includes one-time expenses, such as initial
software purchase and initial on-site consulting and training, so the bene-
fit to cost ratio should improve over time with those one-time expenses out
of the way. On the other side of the equation, any future ROI models would
need to take into account costs of ongoing maintenance of the tool and
process (e.g., IT staff to support the tool, training for new employees, and
so on).

I’ll re-emphasize what I mentioned earlier: the main point of this chapter
is to describe how to build an ROI model for tool support of use case CM,
not the results of this particular case study. I suggest taking this model only
as a starting point, extending what it covers in terms of costs and benefits
and calibrating the model with data from your company and industry.

As they say, “Your mileage may vary.”

CALCULATING YOUR COMPANY’S ROI IN USE CASE CONFIGURATION MANAGEMENT 237

$ 686,973 Estimated total cost at 1.5 years into process an IT rollout

Savings from staff working more efficiently

Savings from avoiding lost requirements

Savings from avoiding cost of unnecessary development

Saving from improved defect removal effectiveness

Total savings

Benefit to Cost Ratio

Cost

Savings $ 489,130

$ 751,304

$ 521,739

$ 584,348

$ 2,346,522

3.4

Figure 7.15 Benefit to cost ratio.

Dealing with Uncertainty in the Model

As noted previously, cells that are gray filled are ones where the values
entered are highly subjective and vary depending on your company, indus-
try, and so on. Here are some ideas for dealing with these uncertainties in
the model.

When originally building this model, I found that a useful approach to
using it was to talk with people who had been using the tool and have them
provide values for these areas of uncertainty. In that way, they could see if

the values they are willing to buy into resulted in a good benefit to cost
ratio. This may not result in a definitive benefit to cost study, but it certain-
ly is useful for getting grassroots acceptance of the tool (assuming that their
values result in benefits greater than cost, which has always been the case
when I’ve tried this).

A variation on this idea is to assemble a group in your company and apply
a technique like Wideband Delphi to determine reasonable values for areas
of uncertainty in the model. Wideband Delphi is a group problem-solving
technique that is often applied to project schedule and effort estimation
that allows a group to converge on an answer that is better than any indi-
vidual would have come up with alone.12

Another common technique for dealing with uncertainties in numeric-
based models is to build a Min and Max version of the model. These values
could come, for example, from your interviews with the staff members who
are using the tool. If you want to get a bit more sophisticated, you can even
run the model through a tool like @Risk, a Monte Carlo simulation add-in
tool for Excel. This provides a probability distribution function of the ben-
efit to cost ratio: a report that tells you the likelihood of a range of possible
benefit to cost ratios based on the uncertainties in your model. It may
sound complicated, but it’s actually very straightforward, and add-ins for
Excel are relatively inexpensive.

Finally, it’s always a good idea to run up estimates based on different mod-
els. Leffingwell (2003) provides an alternate model based on project cost
and benefits due to reduction in requirements errors. It would be a good
cross-check on the results of this model after both are calibrated to the val-
ues that make sense for your company and industry.

238 CHAPTER 7

12 Wideband Delphi is explained in more detail in Chapter 1, “An Introduction to QFD: Driving
Vision Vertically Through the Project.”

Chapter Review

To review, this chapter has presented a model you can use as a starting
point for evaluating your company’s ROI in the use of a requirements man-
agement tool for configuration management of use cases. Key points from
the chapter include the following:

• ROI is a popular method of measuring the need for, or success
of, process improvements and IT investments. The model
presented calculates ROI based on the ratio of benefit to cost.

• Sources of cost used in the model include:

• Cost of software, training, consulting and rollout team

• Cost of tool use overhead

• Cost of added review and rigor as a result of new tool and
process

• Benefits considered in the model are only those related to
reduction in operating expense (e.g., daily time savings and
eliminated rework). Benefits accrued from tool support of use
case CM include:

• Savings from staff working more efficiently because they
have a common, readily available, source of use cases to
work from.

• Savings from avoiding rework due to lost use cases over
time (e.g., from staff churn).

• Savings from avoiding cost of unnecessary development
due to lack of visibility of use cases within projects and
across projects.

CALCULATING YOUR COMPANY’S ROI IN USE CASE CONFIGURATION MANAGEMENT 239

• Savings from reduced rework costs due to improved
requirements defect removal from use cases.

• ROI from this model, with values provided, shows a 3.4 to 1
benefit to cost ratio. Your mileage will no doubt vary. The
model is intended only as a starting place for you to run your
own ROI evaluation.

240 CHAPTER 7

Project portfolio management is the measured allocation of development
resources according to some strategic plan.1,2 Think of it as basically the
same thing as portfolio management of your stocks, bonds, cash, and so on
applied to projects your company is undertaking, or is thinking about
undertaking. Project portfolio management can be viewed as the top-level
management of business requirements for a company. It seeks to under-
stand the business requirements of the company and what portfolio of
projects should be undertaken to achieve them.

It is through portfolio management that each individual project should
receive its allotted business requirements, which in turn drive the specific
use cases that are planned for delivery by each project. It is without portfo-
lio management that a company can find itself squandering precious time,
staff, and resources on the wrong projects, while burning out staff in the
process of trying to complete more projects than is reasonable for available
resources.

241

8

Leveraging Your Investment
in Use Case CM in Project

Portfolio Management

1 For a Unified Software Development Process slant, refer to Scott Ambler’s Enterprise Unified
Process, an extension to the Unified Software Development Process that includes project portfolio
management as a core discipline.
2 Project Management Institute’s PMBOK Guide 2000 edition defines project portfolio manage-
ment as the “selection and support of projects or program investments. These investments in proj-
ect and programs are guided by the organization’s strategic plan and available resources.”

Without some formal project portfolio management process in place, it
becomes difficult to tell if the suite of projects underway is really balanced
resource-wise to the corporate strategy as the company grows.
Additionally, the industry trend is that most companies have more projects
going and planned than they can actually accomplish. The result is similar
to operating systems where running too many processes for a given
amount of memory leads to thrashing: the CPU seems to be working really
hard, but not a lot seems to be getting completed. This is why I say that bal-
ancing your portfolio of projects (i.e., sorting the vital few projects from the
trivial many) could well be the single most far-reaching process improve-
ment possible in your company, removing the pressure that prevents staff
from doing the right job, the right way.3 As Peter Drucker has said, there is
nothing so inefficient as making more efficient that which shouldn’t be
done at all!

What this Chapter Is (and Isn’t) About

In very simple terms, portfolio management is concerned with two
problems:

1. Determining the right mix of project types in a company to meet a
corporate goal.

2. Determining whether (and how) a set of projects in the portfolio can
be executed by a company in a specified time, given finite develop-
ment resources in the company. This is called pipeline management.4

Because of the breadth of the topic, I’ll clarify what we’ll be tackling in this
chapter, especially because it is just one small, albeit critical, piece.

242 CHAPTER 8

3 (Demarco 2001) is a good read if you are interested in how “too much work, too little time” affects
software development projects and the quality of what they produce (see, for example, his chapter
7, “The Cost of Pressure”).
4 Pipeline management is sometimes treated as a separate topic from portfolio management. But
where you see one discussed, you usually see the other as well. It is treated here as part of the larg-
er portfolio management problem.

In this chapter, you will learn how to leverage your company’s investment
in use case CM to provide the measurements and reports you need to man-
age these two key problems of portfolio management: mix of project types
and pipeline management.5

Both the project portfolio management process and use case CM process
are assumed to involve databases (if your company is small enough to do
either by “hand” you probably don’t need project portfolio management
anyway!). You will be shown a minimal set of data that each database needs
to track in order to allow you to measure and report the mix of project types
and measure and report whether the projects in the portfolio are exe-
cutable given the finite set of development resources in the company.

If you already have a project portfolio in place, the framework described in
this chapter is an excellent sanity check, comparing what you think your
allocation of resource by strategic project type is to what your use case CM
database reveals. If you don’t already have a project portfolio database, you
will learn what you need to get started on a bare-bones project portfolio.

In conjunction with textual descriptions of data and reports, the appen-
dices referred to in this chapter include Microsoft Access examples of
tables and queries to better illustrate the implementation details of what is
being discussed without getting in the way of the discussion here in this
chapter. I use Access not because I feel that it is the ideal tool for imple-
menting a project portfolio database, but because it presents database
tables and queries in a relatively non-technical format. Having said that,
I have used Access as a tool to prototype a functional project portfolio
database, including a hookup to a commercial requirements management
tool in which use cases and other requirements were stored. The Access
prototype was used for well over a year by the company and allowed the
portfolio management team to get the ball rolling, do some real portfolio
management, and learn from the experience in preparation for selection of
a replacement for Access.

What you will not learn in this chapter is various theories of project portfo-
lio management or what mix is right for your company. On the other hand,
in the spirit of 20/80 that runs through this book —i.e., showing the 20% of

LEVERAGING YOUR INVESTMENT IN USE CASE CM IN PROJECT PORTFOLIO MANAGEMENT 243

5 See (Hass 2003) for a general discussion of the use of configuration management as a source of
metrics to facilitate project management and process improvement.

a discipline that may well deliver 80% of the value—what you are present-
ed in this chapter may be all the portfolio management you need, or at least
all you’ll realistically ever get around to using. For many companies, simply
putting into place a simple framework for measurement is all that is need-
ed for the “lights to go on” (“We’re planning how much new product devel-
opment?! That will require three times the number of staff we have!”). And
to progress into more sophisticated project portfolio management, you will
have to take this first step anyway. As Cooper et al. (1998) suggest, perhaps
the place to start in answering What mix is right? is to simply begin by ask-
ing What mix do you already have? a question they state many companies
are unable to answer.6

The Good Thing About Use Cases…

Fundamental to portfolio management is the ability to measure the current
and planned allocation of development resources according to some
strategic plan. To do this, we need to be able to estimate the effort planned
for each project in the portfolio, and then roll the results up by one or more
strategic project types (e.g., effort planned for research projects). It is in the
estimation of the planned effort for each project that the use case comes
into play. For use case-driven projects, use cases provide a good basis for
bottom-up estimation of the effort planned for the project.7

First, the early availability of use cases in projects means they are,
well…available. This is an important requisite as a basis for bottom-up esti-
mation; use cases are likely to be available when few other work products
are available as a basis for estimation.

Use cases have a level of abstraction that is just about right. True, the level
of abstraction of use cases fluctuates from application to application and
from author to author. True, the topic “What is the ‘right’ level of abstrac-
tion?” is widely discussed. But, in the grand scheme of things, which port-
folio management certainly is, use cases generally wind up with a level of

244 CHAPTER 8

6 See Chapter 3, “Portfolio Management Methods: A Balanced Portfolio,” section Points for
Management to Ponder.
7 This is also true of extreme programming stories, depending on the amount of detail in the story.

abstraction that is not so high as to obviate the effect of bottom-up estima-
tion (better than marketing descriptions) nor so low as to make bottom-up
estimation an overly cumbersome task (widget level).

Use cases also scale well in terms of level of abstraction and detail. It is not
uncommon for a company’s strategic plan to look out as much as three
years; that is, after all, what strategic, long range planning is about. Given
that the projects in a portfolio are the vehicle for implementing a compa-
ny’s strategic plan, we can expect to be dealing with projects that range
from those already underway, to those just starting, to those that aren’t
scheduled to start for months or years. Use cases can start at a high level of
abstraction and with as little as a name and just enough information to
provide an expectation of what is intended for delivery—for instance, the
use case goal, without scenarios—and through time grow in detail to be a
fully dressed use case and/or expand into multiple use cases. In true rolling
wave-style planning, use cases let us plan in detail for what is close and
plan loosely for what is distant. For projects in the portfolio not due to start
for a while, Extreme Programming’s story may be a good model for a start-
ing level of detail; it provides just enough to get the idea across, but not so
much that it won’t fit on an index card.8 Leffingwell and Widrig’s (2003)
approach to picking the right level of abstraction for features can be
applied here for use cases: for projects in the portfolio scheduled to start in
the future, use a level of abstraction for use cases that is high enough so that
the result is under some maximum number of use cases, such as 10.9,10

And finally, use cases are a lingua franca—a common language—of
requirements, understandable by developers, testers, managers, marketing
and customers alike, which facilitates contribution to, and review of, the
effort estimates that are made.

But before we look at how to your leverage your investment in use case CM
to help with project portfolio management, we need to lay some CM
groundwork.

LEVERAGING YOUR INVESTMENT IN USE CASE CM IN PROJECT PORTFOLIO MANAGEMENT 245

8 See Chapter 11, Writing Stories (Beck and Fowler 2001).
9 See the section “Managing Complexity by Picking the Level of Abstraction” in Chapter 9, “The
Features of a Product or System” in Leffingwell and Widrig (2003).
10 IBM Rational’s RUP Director Per Kroll as “Dr. Process” fields various questions put to him on the
IBM Rational Web site. In response to the question, “How many use cases is too many?” Dr. Process
responds “…a project of [7 to 9 months] would involve roughly 10 to 30 use cases.” For purposes
of scoping a project in a portfolio that hasn’t begun, I recommend fewer.

Use Case Metadata (Requirements Attributes)

Whether you buy a commercial tool specifically designed for requirements
management or decide to use the same CM tool you use for source code, or
even decide to roll-your-own database application, some thought needs to
go into what metadata is needed to support use cases as configuration
items (Hass 2003). That decision is driven, in large part, by the metrics you
would like to have available for project management and process improve-
ments activities (e.g., in this chapter we are interested in use case metada-
ta in support of project portfolio management).

Metadata—a configuration management term—is the additional informa-
tion that needs to be associated with a configuration item (e.g., a use case)
to help manage it. It is information that helps a project team manage the
use case, but is not part of the use case proper: it’s not of interest to the use
case actor.

For example, whereas the steps in a use case are part of the use case prop-
er—the actor is interested in the steps—effort to implement is metadata of
interest to the development team in managing the development of the use
case, but the actor really doesn’t know or care about effort to implement the
use case.

In the requirements engineering and management literature, this informa-
tion is also referred to for example as “requirements attributes” (Wiegers
1999), or “attributes of product features” (Leffingwell and Widrig 2003). I
will use the CM term “metadata” to help emphasize the “up one level”
nature of the data—it is data about data—specifically, data about the use
case that is not part of the use case per se. The term “metadata” also tends
to reinforce the configuration management theme by defining additional
fields you need to set up in your CM tool to support use cases.

How Are You Currently Invested?

When you balance your investment portfolio, you are looking at the alloca-
tion of money across various investment instruments of different types
(e.g., stocks, bonds, and cash). When you balance your project portfolio,

246 CHAPTER 8

you are looking at the allocation of resources—the efforts of your staff—
across a set of projects of different strategic types (e.g., new product devel-
opment versus extensions to existing “cash cow” products).

Say you walk into your local Fidelity Investment or Charles Schwab office
and tell them you need help with your investment portfolio. Before they
even begin to determine the mix of stocks, bonds, and cash you need based
on your investment objectives and risk tolerance, the first question they are
likely to ask is “How are you currently invested?” And, as Cooper et al. (1994)
suggest, this is a good place to start with project portfolio management as
well. So ask yourself, for all your projects that are already underway and for
all your projects that are planned for the future—your current portfolio of
projects—how is your staff effort currently invested by strategic project
type?

This is the first fundamental question we will look at answering by leverag-
ing use case CM.

Inventory of Projects

The first requirement for a balanced portfolio of projects is…a portfolio of
projects! If your company has one of these, much of the work is already
done. But you may find that the process described in this chapter is a very
useful sanity check on your portfolio, comparing what you think your allo-
cation of resources looks like versus what your use case CM data reveals.

If you don’t have a portfolio of projects, you’ll need to build a database that
lists the inventory of all projects you want to manage. While conceptually
simple—you make a list of all projects—it can be a politically charged activ-
ity. But, remember, this could well be one of the best investments in time
you will ever spend in improving the quality of your staff’s work environ-
ment and, consequently, the quality of the products they produce.

A project portfolio database need not be complicated. Here is basic infor-
mation you can track for each project:

• Project Code: An alphanumeric code that uniquely identifies
each project in the portfolio. This serves as the key in your
project portfolio database.

LEVERAGING YOUR INVESTMENT IN USE CASE CM IN PROJECT PORTFOLIO MANAGEMENT 247

• Project Name: The common name of the project. I recom-
mend not using a project name as a key in a project portfolio
database; names change too frequently and hence are not
stable as a key.

• Duration: The amount of time that you expect the project to
last. A common measure for duration is calendar work days.
Because a portfolio database deals with both projects that are
underway and those planned for the future, this will range
from semi-accurate (former) to best estimates (latter).

• Start Date: The project’s estimated start date.

Note that Duration and Start Date don’t have any relevance to the mix of
project types in your portfolio, but are key to pipeline management. We’ll
go into more detail about this later.

In addition to these fields, each project in the portfolio needs to be catego-
rized however you want to balance the portfolio (e.g., the same way you
balance your investments in terms of cash, bonds, stocks, and so on). There
may, in fact, be several different ways you want to slice and dice your proj-
ects, risk and reward being two common ones (If a large percent of your
resources is spent on high-risk, low-reward projects, you have a problem!).
A field is added to the database for each dimension along which you want
to categorize your project portfolio. For our example, we’ll stay with one
category, which we’ll call Project Type. Each project in the portfolio will be
categorized as one of the following types:

• New Product Development: Projects that establish new prod-
ucts for your company. This could be done as part of your
expansion into new markets or to replace aging products.

• Cash Cow Extensions: Projects that develop new functionali-
ty for your existing, mature, cash cow products.11

248 CHAPTER 8

11 “Cash cow” is industry lingo for a typically mature product that is a main source of revenue for
the company.

• Custom Development: Projects that involve custom work for
a specific customer. Companies may be concerned about the
amount of custom work they do because it is often not
reusable with other customers and can drive support costs up.

• Research: Projects that experiment with new ideas. This is
typically an internal release; we’ll assume here that these do
not generate any revenue for the company but are needed to
pave the way for new product development, and so on.

Figure B.1 in Appendix B, “Bare Bones Project Portfolio Database and Use
Case Metadata,” shows a Microsoft Access table for a bare-bones portfolio
database implementing these fields.

Having defined these project types, an obvious question is “What is the
right balance?” Our goal is not to answer that question but to provide the
tools to measure the current allocation. The process for deciding what is
right for your company is literally a book in itself and has been thoroughly
covered elsewhere. However, let us assume for the purposes of this exam-
ple that you have a target mix in mind: your company strategy calls for the
allocation of development resources shown in Table 8.1. If your company
already has a project portfolio database in place, this could represent the
mix that you think you have.

Table 8.1 Target allocation of resource by project type

Project Type Percent of Resource Allocated

Cash Cow Development 50%

New Product Development 40%

Custom Development 5%

Research 5%

Now let’s turn our attention to the role of the use case in project portfolio
management.

LEVERAGING YOUR INVESTMENT IN USE CASE CM IN PROJECT PORTFOLIO MANAGEMENT 249

Metadata Needed for Use Cases

Our goal is to measure the current planned allocation of development
resources against each of the identified project types. To do this, we’ll esti-
mate the effort planned for each project in the portfolio, and then roll the
results up by project type.

It is in the estimation of the planned effort for each project that the use case
comes into play. By estimating the effort of each use case in a project, we
get a bottom-up estimate of the overall project effort. We’ll discuss this
more later. For now, we just need to make sure that after the effort of a use
case is estimated, we have somewhere to record it in the use case CM
database.

Here’s an example of metadata we need to associate with each use case
(Figure B.2 presents this information in a Microsoft Access table):

• Use Case ID: An identifier that uniquely identifies the use
case as a configurable item.12

• Project Code: Use case metadata specifying the project code
of the project in which a use case is to be implemented. This
field ties to the field of the same name in the project portfolio
database.

• Estimated Effort: Use case metadata providing an estimate of
the effort to implement the use case; for example, staff days:
3 staff working for 10 working days = 30 staff days. It could
well be that one use case is implemented across multiple
projects, which we’ll discuss later.

Notice that the effort to implement a use case is ambiguous. This could
either mean the effort of all roles associated with software development,

250 CHAPTER 8

12 If you are using a commercial requirements management tool or commercial source code CM
tool an identifier is generally automatically generated for each configuration item. If you are build-
ing your own database for use case CM, you’ll need some ID such as this. The use case name can’t
be counted on to uniquely identify a use case, nor is it a stable field (i.e., it is very likely to change
over time) so it is not suitable as part of the key.

such as developers, testers, managers, marketing, and so on, or it could
refer to just the effort of one role, such as developers (i.e., the ones who
design and code). For our purposes, it doesn’t really matter which interpre-
tation you care to use, with one caveat: a portfolio balanced for one role
might not be balanced for all roles unless your organization has the right
ratio of staff for each role. This is particularly true for the ratio of testers to
developers, the two biggest staffing requirements for most software devel-
opment projects. If the ratio of testers to developers is not sufficient, the
development organization can produce far more (unstable) code than a
testing organization can test. Balancing a portfolio of projects based on
development resources will do little to alleviate overloading on the testing
group in this case. In short, if you want to do portfolio balancing for just
one software development role, figure out which is your bottleneck and
balance to that. It won’t be perfect, but it’s a good 20/80 heuristic.

Assign Use Case to Project and Estimate Effort

After metadata fields are set up in your use case CM database, all that
remains is to assign each use case to the project it will be implemented in
(i.e., assign it a project code) and provide an estimate for the effort required
to implement it. It’s important to keep in mind that this is not an activity a
single person is likely to undertake (i.e., assigning use cases to projects and
estimating effort for use cases across the company). With a CM framework
in place, development teams will perform this task, enterprise wide, for the
use cases of their projects. With a possibly wide variety of application types
and a wide variety of staff doing the estimation, you could very well wind
up with a variety of estimation styles and accuracies. But, luckily, for port-
folio management, it’s probably OK.

For project portfolio management, one doesn’t necessarily need pinpoint
accuracy in estimates. First, because we are working at the portfolio level,
we are dealing with an aggregate of use cases, so underestimates in one use
case will likely cancel overestimates in another: the law of large numbers
from statistics is on our side.13 In the worst-case scenario—where estimates

LEVERAGING YOUR INVESTMENT IN USE CASE CM IN PROJECT PORTFOLIO MANAGEMENT 251

13 Breaking a big task into smaller ones, and then estimating their effort to derive the estimate for
the whole is a common project estimation technique. It works because errors made in the small
tend to cancel one another out: you overestimate one, but underestimate the next. See (McConnell
1996) for more discussion on the Law of Large Numbers as an estimation technique.

are made via the WAG14 method—we can almost be certain that any
estimate for a project made by bottom-up WAGs on use case effort will be
closer to the truth than a single WAG on the project as a whole.

Besides, if your project portfolio is really out of whack—and industry trends
suggest there’s a good chance it probably is—being off a bit on a use case
estimate here and there is not going to make a significant difference.

Techniques for Estimating Effort

Though we don’t need to necessarily take a rocket-science approach to use
case estimation for portfolio management, it’s still worthwhile to have
some ideas on how to approach the problem in order to provide guidance
to development teams. Here are some examples illustrating three common
themes in estimation of effort: effort based on size, historical data, and col-
lective wisdom and experience.

Use Case Points: Estimation Based on Size

When dealing with use cases where ample detail is provided and teams are
inclined to be as accurate as possible, use case points are an option. Briefly,
the estimate of effort is driven by an estimate of use case size in terms of
number of transactions between user and system, number of scenarios
making up the use case, and number of analysis classes (if available). The
size estimate is then calibrated based on various factors, such as technical
complexity of the application and team and environmental factors. The
final calibrated use case point count is then converted to an effort estimate.
Use case points were originally researched by Gustav Karner and are a
derivative of Allan Albrecht’s Function Points applied to use cases.15

Estimating XP Stories: Estimation Based on Historical Data

In Extreme Programming (XP), estimation relies heavily on historical data.
A new story—XP’s counterpart to the use case—is compared with one
you’ve done in the past, the true implementation effort of which you now

252 CHAPTER 8

14 WAG stands for Wild A** Guess, a common software project estimation technique.
15 See (Schneider and Winters 1998) for more detail, particularly the section “Estimating Work with
Use Cases” in Chapter 8, “Use Cases and the Project Plan.”

know. That historical data is then used to estimate the effort to implement
the new story (e.g., it’s twice as hard, or half as hard, as the previous one).
For use cases that are briefly fleshed out because they are part of projects
in the portfolio not scheduled to start for a while, this approach is a good
option (Beck and Fowler 2001).

Wideband Delphi: Estimation Based on Collective Wisdom and

Experience

A general group problem-solving technique that is often applied to project
schedule and effort estimation is Wideband Delphi (Boehm 1981).16 Briefly,
a team, through an iterative process of making individual, anonymous esti-
mates, followed by show-and-tell, and then group discussion, converges on
an estimate all team members agree upon. In the process, tacit assump-
tions and information held by individuals is brought to the surface for the
group as a whole to see. In a workshop setting, any number of streamlined
variations on this theme can be used to allow a team to crank out a lot of
use case estimates in a short amount of time.

What About Use Cases Implemented Across Projects?

You may have a use case that will be implemented across multiple separate
projects. I have been involved in cross-company, multi-project programs
where use cases were used to show how several products worked together
in large cross-product workflows. The same would be true for a use case
that crossed component boundaries and where the components were
being implemented in separate projects by separate teams.17 For these
instances, in terms of CM, you can either introduce a separate project code
for cross-project use case work, with effort representing all projects, or
each project can have its own “version” of the use case—from its perspec-
tive—for which it is responsible for CM and which includes the effort for
their piece of the use case.

LEVERAGING YOUR INVESTMENT IN USE CASE CM IN PROJECT PORTFOLIO MANAGEMENT 253

16 Originally described by Barry Boehm in the book Software Engineering Economics (1981), there
are ample sources describing this technique.
17 An example of use case-driven distributed development across separate component teams is
presented in Chapter 2, “Aligning Decision Making and Synchronizing Distributed Development
Horizontally in the Organization.”

Checking the Mix

An inventory of projects has been made and categorized by project type.
The use case CM database has been extended to include metadata about
project code and effort. Development teams have allocated use cases to the
projects in the portfolio and estimated the effort to implement each. We are
now ready to run a report that measures the allocation of estimated effort—
via use cases—against project types. Figure 8.1 illustrates the use of a pie
chart for just this purpose. Figure B.3 in Appendix B provides the Access
database query that totals the effort by project type used to generate this
pie chart.

254 CHAPTER 8

Research
4%

Cash Cow
Development

29%

Custom
Development

8%
New Product
Development

59%

Figure 8.1 Pie chart of effort to implement use cases allocated by project type.

With a breakdown of effort by project type available, we can now compare
the target portfolio mix against actual. A comparison of target goals for
allocation from Table 8.1 is compared with actual contents of the portfolio
in Table 8.2.

Table 8.2 Comparison of target versus actual content

Percent of resource allocated by project type in project portfolio

Project Type Target—Percent of Actual—Percent of
Resource Allocated Resource Allocated

Cash Cow Development 50% 29%

New Product Development 40% 59%

Custom Development 5% 8%

Research 5% 4%

As the comparison shows, actual contents of the portfolio—as modeled by
our inventory of projects and planned use cases—are not in synch with the
target allocation of resource by project type. The current portfolio of proj-
ects has less effort in Cash Cow Development than we want and too much
in New Product Development. Planned work in Custom Development and
Research are pretty close to target allocations.

We started out this section asking the question “How are we invested?” i.e.,
how does our portfolio of projects allocate the company resources by
strategic project type. By leveraging our investment in use case CM as a
means to do bottom-up estimation of effort by project, we’ve identified a
framework for answering this question on an ongoing basis. In Scott
Ambler’s Enterprise Unified Process, results such as those in Table 8.2
would be reviewed by the portfolio management team at its periodic meet-
ings, probably quarterly or semiannually. For our example, the results of
Table 8.2 indicate that some adjustments to the portfolio are probably
needed. But before making changes—killing some projects and removing
scope (use cases) from others—there are more questions a portfolio man-
agement team needs to answer.

Managing the Pipeline

To this point, we have been concerned with how to leverage use cases to
measure the mix of projects in the project portfolio. But we also need to be
able to measure if the projects in the portfolio are executable within the
times specified by the portfolio given the finite set of development
resources in the company. This is called pipeline management, taken from

LEVERAGING YOUR INVESTMENT IN USE CASE CM IN PROJECT PORTFOLIO MANAGEMENT 255

the analogy of software development being like a pipe with fixed through-
put capacity. The problem of balancing the portfolio of projects has to take
both these dimensions into account: the mix of project types and the quan-
tity of projects that the organization can realistically take on at a given time.

Let’s look at how the work we have already done to estimate use case effort
and assign use cases to projects can help with pipeline management.

Full Time Equivalent (FTE) Models of the Project
Portfolio

Full Time Equivalent (FTE) is a simplified measure of work that provides a
quick way to get ball-park estimates of the number of staff needed to get a
job done within a specified period of time. Let’s walk through a simple
example; see Table 8.3. Let’s say we have five use cases to implement this
month. Each use case is estimated to require 10 work days for one person
to implement. That works out to be 50 staff days of effort to implement all
use cases. If one FTE is counted as being able to work 20 days a month, to
determine the number of FTEs we need to implement all use cases this
month, we divide the total effort by 20 (the number of work days for one
FTE), which yields 2.5 FTEs.

FTE models present us with a 20/80 solution to balancing project portfo-
lios: they are a simplification of the complexities of real life projects, so they
are quick and easy to apply to large aggregates of projects. And because
they are a simplification of reality, they represent a best-case scenario: if
your project portfolio doesn’t balance using the FTE model, it most likely
will not balance under the messy conditions of scheduling in real life!

Table 8.3 Calculating FTEs needed to implement use cases

5 Use cases to implement this month

10 Work days for one person to implement one use case

50 Work (staff days) to implement all use cases

20 Work days in a month for one full-time person

2.5 FTEs needed = Work divided by working days a month for one full-time person

256 CHAPTER 8

Run Chart of FTEs Through Time

A good way to sanity check the project portfolio is to build a run chart of the
number of FTEs required to do the work in the project portfolio through
time. If the portfolio calls for all the work being done at the same time, say
in six months, the run chart will show a large number of FTEs required to
implement the work in that period of time. If the portfolio spreads the work
out across two years, the run chart will show a quarter of the FTEs required,
but for a longer period of time. The sanity check to perform is that the run
chart should never call for more FTEs than we actually have available to
work. That is the upper limit on our capacity to develop software: the num-
ber of FTEs we have available.

Microsoft Project has the capability to generate run charts of FTEs through
time, called resource graphs. These are ideal for viewing the data in a proj-
ect portfolio; your favorite scheduling tool probably provides similar func-
tionality. The run chart in Figure 8.2 was produced by importing combined
data from both the project portfolio database and from the use case CM
database into Project (see Appendix C for details on how this is done).

LEVERAGING YOUR INVESTMENT IN USE CASE CM IN PROJECT PORTFOLIO MANAGEMENT 257

Figure 8.2 Schedule and resource graph of project portfolio database generated by Microsoft Project with
effort supplied by use case CM database.

As a member of a use case development team, one of the first things you
might notice about Figure 8.2 is the time scale: years. Your first reaction
might be: Nobody has use case-driven projects that last years! Keep in mind
that the time scales are not for one project, but rather all ongoing or
planned projects. Portfolio management is about strategic, long-term plan-
ning, so a portfolio of projects typically reflects the company’s three-year
business plan, which is illustrated here. How do you write use cases for a
project that won’t start for another year? As already noted, use cases that
are identified for such projects can be at a very high level of abstraction and
with as little as a name and just enough information to provide an expecta-
tion of what is intended (refer to the “The Good Thing About Use Cases…”
section).

Let’s hit some of the highlights of what we see in Figure 8.2.

Gantt Chart: Top Half of Window

Figure 8.2 presents a split window; the top half provides a Gantt Chart view
of the projects in the portfolio. The percentage that Project calculates for
each project (each line of the Gantt chart) is the number of FTEs needed for
that project. An entry like FTE[100%] means one FTE, the equivalent of one
full-time person. An entry like FTE[50%] means half an FTE, or one person
working half of the time. An entry like FTE[2400%] means 24 FTEs.

Even at this level, you can start spotting problems. For example, you spot
what you know is a five-person project that shows up here as requiring, for
example, 15 FTEs to accomplish the number of use cases assigned to it in
the time allotted by the project portfolio.

Resource Graph View: Bottom Half of Window

The bottom half of the window shown in Figure 8.2 provides the resource
graph, which is a rollup of all FTE calculations for all projects in the port-
folio. In this way, we get a portfolio-wide look at the capacity being called
for to execute all projects in the portfolio.

The Y-Axis of the resource graph is labeled from 2,000% to 16,000%. Again,
these entries can be read as the number of FTEs required: 2,000% = 20 FTEs
(remember, 1 FTE = 100%) and 16,000% = 160 FTEs.

258 CHAPTER 8

Notice that the graph has a horizontal line drawn at 8,000% (80 FTEs). This
line marks the upper limit of capacity for work of the company in FTEs. The
area above this line indicates the extent to which the portfolio calls for
more resources than are available. In our example, the capacity for work is
exceeded by the portfolio of projects in a number of places by as much
as 75%.

For the example here, the company’s capacity for work has been set to 80
FTEs. You should set this to the number of FTEs you have to work on the
projects in your portfolio.18 If your estimates of effort for implementing use
cases include all roles associated with software development—developers,
testers, managers, marketing—use that as a basis for the number of FTEs
you have available. If, however, your estimates of effort for implementing
use cases include one role—for instance, the bottleneck in your develop-
ment process—use the number of FTEs available for that role as your
capacity limit.

Keep in mind that the number of FTEs available to work on projects in the
portfolio probably does not equal head count. Let’s say you have 50 devel-
opers, and in your company the same developers who will work on the
portfolio of projects also spend 10% of their time doing maintenance,
which in our example is not covered in the portfolio of projects. In that
case, you really have more like 45 FTEs that are available to work on the
portfolio of projects (50 minus 10%). In general, it is rare that 100% of a per-
son’s time at work is spent exclusively on projects. So remember to adjust
the FTE limit to account for non-portfolio efforts, such as training, meet-
ings that don’t relate to the project, sick leave and vacation, and so on.19

Tracking the Status of the Portfolio via Use Cases

Just as periodic checks of your stocks and bonds are important to see if they
are growing as hoped, so are periodic reviews of your portfolio of projects
to see if they are progressing as planned. In this section, we’ll look at a

LEVERAGING YOUR INVESTMENT IN USE CASE CM IN PROJECT PORTFOLIO MANAGEMENT 259

18 In Project, this limit is set via the resource sheet.
19 Company-wide down time such as holidays and weekends can be accounted for by adjusting
work time in the scheduling tool.

report you may find useful for tracking the progress of large numbers of
projects in the portfolio. The report tracks the progress of projects in terms
of the status of the use cases that make up each project.

Status of Use Cases

A type of metadata commonly associated with requirements is status. A
good way to think of the status of a use case is in terms of the life cycle of a
use case, progressing from conception to implementation and validation,
at which time it is shipped to the customer in the form of implemented
code. Table 8.4 provides typical values for tracking the status of implemen-
tation of a use case.20

Table 8.4 Example use case status and descriptions

Status Description

Draft Use case writing in progress

Proposed Use case submitted for analysis and approval

Approved Use case has been analyzed and approved for some release (metadata field
Project Code will specify which)

Rejected Not approved for any release

In Progress Coding underway

Implemented Coding complete

Validated Use case shown to be implemented correctly in the product

Use cases—and their cousin, the Extreme Programming (XP) story—have a
number of benefits as a basis for tracking progress in a project:

• First, use cases are a good size. A use case, as a basis for a proj-
ect deliverable, provides a discrete unit of work that is not so
big that you have to wait a long time to know if it’s behind
schedule and not so small that managing the project by them
is overly tedious. As a project deliverable, they naturally

260 CHAPTER 8

20 These are only examples typical of those found in the literature, such as (Weigers 1999) and
(Leffingwell and Widrig 2003). You need to identify status information that works for you.

encourage project management by “inch pebbles” rather
than milestones. It is no coincidence that the Unified
Software Development Process is both use case-driven and
iterative/incremental. The former enables the latter to hap-
pen (the same can be said of XP stories).

• Use cases are customer focused. Futrell, Shafer, and Shafer
(2000), in discussing project Work Breakdown Structures
(WBS)—the blue print for running the project—argue that the
best WBS is one organized around work products and deliver-
ables that are linked directly to satisfying the customer’s
requirements. Use cases certainly fit this bill.

• Finally, use cases are always pertinent. Use cases are one of
the few development artifacts that are pertinent as a basis for
tracking project progress through all the core workflows of the
Unified Software Development Process (requirements, analy-
sis, design, implementation, and testing). In contrast, though
defects are a wonderful basis for tracking product health—for
example, in terms of open defects, arrival rates, and the rate
at which they are resolved—they are only available for use
very late in the game.

Figure D.1 in Appendix D shows an extension of the use case metadata to
cover the status of use cases in your requirements management tool or
source code CM system.

Now let’s see how to leverage use case status for tracking the progress of
large numbers of projects in the portfolio.

Tracking the Progress of Projects with the Status
of Use Cases

One straightforward approach for tracking the progress of a project is
to track the number of use cases by status type (e.g., the number in draft
versus number implemented). As Wiegers (1999) has noted, tracking the
number of requirements that are in discrete categories (e.g., draft versus

LEVERAGING YOUR INVESTMENT IN USE CASE CM IN PROJECT PORTFOLIO MANAGEMENT 261

implemented) is more realistic than trying to track, for example, percent
completion of each individual requirement. Wiegers (1999) provides exam-
ple run charts for tracking requirement status in this fashion.21 But using
the number of use cases has the drawback that not all use cases require the
same effort to implement. For instance, if you implemented and validated
all but 20% of your project’s use cases that remaining 20% could well repre-
sent 80% of the remaining effort of your project.

An alternate approach is to use the sum of effort of use cases by status type;
it is a more accurate indicator of project progress. Again, the work we have
already done on estimating use case effort and assigning use cases to proj-
ects is just what we need.

Figures 8.3 and 8.4 present Excel-based reports that are useful for tracking
the progress of large numbers of projects in your project portfolio; bars
remain legible with as many as 100 projects. (See Appendix D, “Reports for
Tracking Progress of Projects in Portfolio” for details on how to produce a
report like this.) Figure 8.3 presents the Y-axis as total effort, which is use-
ful for comparison of the sizes of projects. Figure 8.4 presents the same data
but with the Y-axis showing % of total effort; this can be useful when com-
paring projects with widely varying efforts.

In this report, each project is shown with a single bar; if you have a very
large portfolio of projects (such as more than 100), you may want to do sep-
arate reports for meaningful subsets, for example by project type (e.g., new
product development versus research). Each bar provides a visual cue as to
the readiness of the project to release in terms of the status of the use cases
which make it up. Project 1, for example, has about 35% of its use case
effort with status implemented and another 65% completely finished.
Overall, Project 1 is nearly done. To the far right on the X-axis is Project 6,
with a start date much later than that of Project 1. You can see that 100% of
its use case effort is in draft status.

Notice that each project name (X-axis) is prefixed with the start date of the
project (you can use completion date if you prefer). This allows us to sort
the projects with time increasing from left to right along the X-axis. This
orientation along the X-axis, from earlier to later, means that, in general, we

262 CHAPTER 8

21 Weigers (1999). See the “Requirements Attributes” section in Chapter 16, “Requirements
Management Principles and Practices.”

Figure 8.4 Report for tracking status of projects in the portfolio by use case status and percentage of effort.

LEVERAGING YOUR INVESTMENT IN USE CASE CM IN PROJECT PORTFOLIO MANAGEMENT 263

����

���

���

���

���

���

���

���

	��

���

�

��
�������

��
������

��������

� ��������

��
�������

��
������

��������

��������

� ��������

��
�������

�����

��������

��������

��������

�����

�����

���� �� ����	
� � ���� �� ����	
� � ���
 �� ����	
� � ���
 �� ����	
� � ���� �� ����	
� � ���� �� ����	
�

�
�
��
�
�
�	
�
�
��
��
�
�
�
�
�
�
�
��
�
��

����
������ ��� �� �� ���� ��� ����! �� �"��#

��
��
�������

��
� �������� ��� �� ��������#

����������

	���������

������� ��� �� �� �����#

Figure 8.3 Report for tracking status of projects in the portfolio by use case status and effort (staff days).22

����

���

���

���

���

���

���

	��

��

���

��

��
��������

���������

�

�����

��
��������

���������

�� ��������

���
����

�

�����

�� ��������

��
��������

�����

���
����

�

����� ���
����

�����

�����

2005 Q1 Project 1 2005 Q3 Project 2 2006 Q1 Project 3 2006 Q3 Project 4 2007 Q1 Project 5 2007 Q3 Project 6

%
 o

f
E

st
im

at
ed

 S
ta

ff
 d

ay
s

o
f

E
ff

o
rt

����������� ��!�� �� ��
� ��� ����" �� �#�
$

����
��������

����
������� ��!�� ��
�����$

	��

�����

����
����

������� ��!�� �� �����$

expect to see more advanced progress in projects as we scan left to right.
This provides an additional sanity check on projects, allowing us to look for
projects in the portfolio that don’t appear to be progressing adequately.

22 Here’s an idea you might want to try to improve the “at-a-glance” quality of the report. Assign
each status a color along a continuum starting with bright green for draft to bright red for validat-
ed. This color scheme uses the metaphor of ripening fruit to further convey project progress at a
glance; scanning from left (earliest dates) to right (later dates), one expects to see the “fruit” of the
portfolio go from predominantly red (projects “ripe” for release) to predominantly green (projects
still “green”; not ready to ship).

In all, the report is a good tool for getting a high level, “at-a-glance” look at
the progress of large numbers of projects in your portfolio, as illustrated in
Figure 8.5.

264 CHAPTER 8

����

���

���

���

���

���

���

���

	��

���

�

20
05

-Q
1 P

ro
jec

t 0
1

E
st

im
at

ed
 S

ta
ff

 D
ay

s
o

f
E

ff
o

rt

�
��
������ ������ �� ���� ��� ����� �� �����

�
���
�������

�
�� �������� ������ ���������

�
 ����!��

	
"�������

�
#���� ������ �� ������

20
05

-Q
1 P

ro
jec

t 0
2

20
05

-Q
1 P

ro
jec

t 0
3

20
05

-Q
2 P

ro
jec

t 0
4

20
05

-Q
2 P

ro
jec

t 0
5

20
05

-Q
3 P

ro
jec

t 0
6

20
05

-Q
3 P

ro
jec

t 0
7

20
05

-Q
3 P

ro
jec

t 0
8

20
05

-Q
4 P

ro
jec

t 0
9

20
05

-Q
4 P

ro
jec

t 1
0

20
06

-Q
1 P

ro
jec

t 1
1

20
06

-Q
1 P

ro
jec

t 1
2

20
06

-Q
1 P

ro
jec

t 1
3

20
05

 Q
1 P

ro
jec

t 1
4

20
06

-Q
2 P

ro
jec

t 1
5

20
06

-Q
2 P

ro
jec

t 1
6

20
06

-Q
3 P

ro
jec

t 1
7

20
06

-Q
3 P

ro
jec

t 1
8

20
06

-Q
4 P

ro
jec

t 1
9

20
06

-Q
4 P

ro
jec

t 2
0

20
07

-Q
1 P

ro
jec

t 2
1

20
07

-Q
1 P

ro
jec

t 2
2

20
07

-Q
1 P

ro
jec

t 2
3

20
07

-Q
2 P

ro
jec

t 2
4

20
07

-Q
2 P

ro
jec

t 2
5

20
07

-Q
3 P

ro
jec

t 2
6

Figure 8.5 Report allows “at-a-glance” review of progress of large numbers of projects in your portfolio.

Chapter Review

In this chapter, we’ve looked at how to leverage your company’s investment
in use case configuration management (CM) to provide metrics and
reports to facilitate project portfolio management. To review:

• Project portfolio management is the measured allocation of
development resources according to some strategic plan,
much like you measure your financial investment in stocks,
bonds, and cash.

• An important component of portfolio management is
pipeline management: determining whether a set of projects
in the portfolio can be executed by a company in a specified
time, given finite development resources in the company.

• Use cases provide a good basis for bottom-up measurement
of the effort needed for projects. Metrics derived from the use
case CM database, tied to the project portfolio database,
allow a portfolio management team to:

• Evaluate the mix of strategic project types in the portfolio

• Evaluate whether projects are executable in the times spec-
ified by the portfolio

• Track the status of large numbers of projects in the portfolio

• While theories of portfolio management are concerned with
answering What mix of project types is right? a good first start
is to ask the question What mix do you already have? For
some companies, putting the measurement framework into
place to answer this question may be all the project portfolio
management they ever need.

• From a quality standpoint, not having a project portfolio
management process means vital projects may drag on
longer than they should because staff is spread thin. Vital
projects suffer; staff suffers; quality suffers.

LEVERAGING YOUR INVESTMENT IN USE CASE CM IN PROJECT PORTFOLIO MANAGEMENT 265

This page intentionally left blank

Part 5

Appendices

This page intentionally left blank

This appendix is in support of the “Using QFD to Align Decision Making
Horizontally Across a Company” section in Chapter 2, “Aligning Decision
Making and Synchronizing Distributed Development Horizontally in the
Organization.” It provides a sample use case to illustrate the combined use
of three disciplines—geology, geophysics, and petrophysics—for oil and
gas exploration. This use case is provided as motivation to the central prob-
lem of the section, (i.e., selection of a developer’s toolkit for shared earth
modeling company-wide across all components of O&G’s product suite).

While providing a tutorial on oil and gas exploration is out of the scope
of this book (never mind that I’m not qualified to do so), some explanation
on what the use case is actually doing will be provided after each use
case step.1

The name of this use case is Create 2D Cross Section. The goal is to gain a
better understanding of where oil might be by producing a 2D display of a
geologic cross section, augmented with measures made of wells (petro-
physics) and data from seismic surveys (geophysics) for a line-of-section
drawn on a basemap by an interpreter. Figure A.1 will be used as a visual
reference in the use case. The steps for the use case follow:

269

A

Sample Use Case

1 Thanks to John Fierstien and Gary Paisley for helping with the geoscience of this use case.

1. Log-in as an interpreter with valid ID and create new project or load
existing project to be evaluated.

Explanation: Interpreters are geoscientists that interpret data to deter-
mine the location of oil and gas. A project is just a bundle of work—
models, data, notes, and so on—that gets saved. A given project may
have a number of different interpreters, so logging-in not only
prevents unwanted access to a project, but provides a way to keep
separate the interpretations of one person from another.

2. Set stratigraphic column to be used for the project.

Explanation: A stratigraphic column is a model of the sequence or lay-
ers of rock formations in an area. Different areas of the world have dif-
ferent geology: the strata that is exposed in Houston, Texas, is differ-
ent from the strata that is exposed in Denver, Colorado. The inter-
preter is simply specifying the geology to be used for the project.

3. Review available well data and select wells of interest.

Explanation: Wells are oil wells; actually wells drilled in exploration of
oil: many are “dry holes.” Wells—even dry holes—are important
because they provide one of the few opportunities to get a direct
“look” inside the earth, called well logging. If an interpreter looks at
half a dozen wells in a field, and all had oil bearing rock at the same
depth in the hole, the interpreter might make the leap of faith that oil
bearing rock lies at that same depth in other parts of the field.

4. Select well log template or create new template with well template
editor, then preview with well viewer.

Explanation: A well log is a report of the data obtained from logging a
well. An interpreter uses a log template as a starting place to specify
what properties are to be displayed on the well log, such as electrical
resistivity. Because oil is an insulator, it “resists” electricity. By viewing
a well log of the electrical resistivity measured up and down the bore-
hole, the interpreter can spot depths where there may be oil.

5. Review available 3D seismic surveys of the area and select one of
interest.

270 APPENDIX A

Explanation: Whereas the geologic model of an area is based on
observations of strata at the surface and what we know about geology
of the earth in general, and whereas well logs are based on measures
made at particular spots along the borehole of particular wells, seis-
mic surveys are a way to remotely view inside the earth on a broader
scale giving a fuller picture of the earth for the area of interest. 3D seis-
mic surveys allow the geoscientist to select an arbitrary section
through the seismic data that matches any cross section (explained in
step 7) that a geoscientist might construct.

6. Create basemap showing well locations.

Explanation: A basemap is basically what most of us think of when we
think “map”: a view of the earth’s surface from above. Of particular
interest on the basemap are the locations of wells that have been
drilled in the area. See basemap (center) in Figure A.1. Wells selected
from step 3 are shown on the basemap.

7. Draw a line-of-section on basemap that includes wells to evaluate;
View 2D cross section.

Explanation: A line-of-section is a straight line, or series of connected
straight lines, on a basemap. An interpreter usually draws a line-of-
section connecting several wells in an area, as has been done in Figure
A.1; see the dark line running northwest to southeast on left of
basemap. The line-of-section specifies that part of an area for which
the interpreter wants to view the cross section. A cross section is a view
of the earth from the side. When you drive your car through a hill
where the hill has been cut-away for the road, you are looking at a
cross section of the hill. Having included wells in the line-of-section,
the interpreter will get a view of not only the geologic strata that cor-
responds to the line-of-section but also a well log superimposed over
each borehole in the cross section. The interpreter will also get a cross
section of the seismic data along the line-of-section. In this way, the
interpreter combines information from three disciplines—geology,
petrophysics, and geophysics—to form a more complete idea of what
actually lies beneath the earth and where oil and gas are likely to have
been created and trapped in a reservoir.

SAMPLE USE CASE 271

Figure A.1 Basemap (center) with line-of-section (LOS)—the dark line running northwest to southeast on
left of basemap—indicating that area for which the geoscientist wants a geologic cross section,
well logs, and seismic survey displayed in 2D.

272 APPENDIX A

2D Cross Section
of Seismic Survey

for LOS

2D Geologic
Cross Section
for LOS

2D Cross
Section of
Each Well
Showing

Resistivity

Basemap with Line Of Section (LOS)

This appendix provides tables and queries in support of the “How Are You
Currently Invested?” section in Chapter 8 “Leveraging Your Investment in
Use Case CM in Project Portfolio Management.”

Bare-Bones Portfolio Database

If you don’t have a portfolio of projects, you’ll need to build a database that
lists the inventory of all the projects you want to manage. A project portfo-
lio database need not be complicated. Figure B.1 shows basic information
you can track for each project. The database needs to include a field or
fields by which every project can be classified and by which you can meas-
ure how the project portfolio database allocates development resources.
Here field Project Type is used for this purpose. Fields Duration and Start
Date are used for pipeline management of the project portfolio.

273

B

Bare-Bones Project
Portfolio Database and

Use Case Metadata

Figure B.1 Fields needed for a bare-bones project portfolio database. Note the symbol indicating the field
that forms the key for the table.

Use Case Metadata

A goal of project portfolio management is to measure the allocation of
development resources against each of the identified project types. To do
this, you can estimate the effort planned for each project in the portfolio,
and then roll the results up by project type. It is in the estimation of the
planned effort for each project that the use case comes into play. By esti-
mating the effort of each use case in a project, you get a bottom-up esti-
mate of the overall project effort. Figure B.2 shows a table with a minimal
amount of use case metadata needed to generate the reports of Chapter 8.

274 APPENDIX B

Figure B.2 A minimal amount of use case metadata is needed to generate the reports of Chapter 8.

Checking the Mix of Project Types

After an inventory of projects has been made and categorized by project
type and development teams have allocated use cases to the projects in the
portfolio and estimated the effort to implement each, you are ready to run
a report that measures the allocation of estimated effort—via use cases—by
project types.

The query shown in Figure B.3 illustrates the combined use of data from
the project portfolio database (refer to Figure B.1) and the metadata of the
use case CM database (refer to Figure B.2) to produce a table listing esti-
mated effort per project type, illustrated in Figure B.4. Such a table can then
be used in your favorite graphing package to produce a pie chart like that
shown in Figure 8.1 in Chapter 8.

BARE-BONES PROJECT PORTFOLIO DATABASE AND USE CASE METADATA 275

Figure B.3 Query to calculate estimated effort by project type. Example results from this query are shown in
Figure B.4.

Figure B.4 Estimated use case effort by project type.

276 APPENDIX B

This appendix provides tables and queries in support of the “Managing the
Pipeline” section in Chapter 8, “Leveraging Your Investment in Use Case
CM in Project Portfolio Management.”

A good way to sanity check a project portfolio is to build a run chart of the
number of FTEs required to do the work in the project portfolio through
time. Microsoft Project has the capability to generate such run charts,
called resource graphs. The run chart of Figure 8.2 (lower window) was
produced by importing combined data from both the project portfolio
database and from the use case CM database into MS Project.

Following are sample queries showing how to combine data from the
project portfolio database and the use case CM database for importing into
a scheduling tool, such as MS Project.

Query to Sum Use Case Effort by Project Code

We start with a query that estimates the amount of effort that each project
in the portfolio represents. The work we did to estimate effort for use cases
will provide just what we need for this.

277

C

Run Chart of FTEs
Required by Project

Portfolio

Figure C.1 is a Microsoft Access database query to sum use case effort by
project code. A sample of the results from this query is provided in Figure
C.2. This query is similar to the one we used earlier to total effort by project
type (refer to Figure B.3).

278 APPENDIX C

Figure C.1 Query to calculate use case effort by project code.

Figure C.2 Sample results produced by query of Figure C.1.

RUN CHART OF FTES REQUIRED BY PROJECT PORTFOLIO 279

Query to Prepare Data for Import to Microsoft
Project

Getting the combined project portfolio and use case information into
Microsoft Project so that it can generate a resource graph is straightfor-
ward. A database query is written to build a table with the information
needed for MS Project to generate a schedule. That table is then imported
into Microsoft Project; MS Project does the rest, i.e., generates the desired
run charts.

Figure C.3 shows the MS Access query that will generate a table suitable for
import into MS Project; it uses the query just created to sum use case effort
by project code (refer to Figure C.1).

A sample table created by this query is shown in Figure C.4. In the table,
each row corresponds to one project in the portfolio database. Notice that
the names of columns match the names of fields that MS Project uses for
schedules, namely:

• Task Name—Each project in the portfolio becomes one task
in MS Project. The project code is used for the task name.

• Work—This is the field MS Project uses for effort. For each
project, we use the sum of effort of all use cases assigned to
the project.

• Duration—This is the duration, in calendar work days, as per
the project portfolio. See Figure B.1.

• Start—This is the date the project is scheduled to start as per
the project portfolio. See Figure B.1.

To build a schedule, we simply import this table into MS Project. Figure 8.2
shows a schedule with resource graph generated from the import of the
data of Figure C.4, which was produced by the query shown in Figure C.3.

280 APPENDIX C

Figure C.3 Query to calculate data for import to Microsoft Project. Notice that it uses the query previously
defined in Figure C.1. An example of this query’s results is provided in Figure C.4.

RUN CHART OF FTES REQUIRED BY PROJECT PORTFOLIO 281

Figure C.4 Table for import into Microsoft Project. This table was created by the query shown in Figure C.3.

282 APPENDIX C

This appendix provides tables and queries in support of the “Tracking the
Status of the Portfolio via Use Cases” section in Chapter 8, “Leveraging Your
Investment in Use Case CM in Project Portfolio Management.”

Just as periodic checks of your stocks and bonds are important to see if they
are growing as anticipated, so are periodic reviews of your portfolio of proj-
ects to see if they are progressing as planned. This appendix provides infor-
mation on how to produce reports, such as those shown in Figures 8.3 and
8.4, which are useful for tracking the progress of large numbers of projects
in the portfolio. These reports track the progress of projects in terms of the
status of the use cases that make up each project.

Metadata for Use Case Status

A type of metadata commonly associated with requirements is status.
Figure D.1 shows how to extend the table of Figure B.2 in Appendix B,
“Bare-Bones Project Portfolio Database and Use Case Metadata,” to include
tracking the status of each use case (e.g., Draft, Proposed, Approved,
Rejected, and so on).

283

D

Reports for Tracking
Progress of Projects

in Portfolio

Figure D.1 Use case metadata extended to cover status.

Report for Tracking Status of Projects in the
Portfolio by Use Case Status

An effective approach for tracking the status of a project in a portfolio data-
base is to track the sum of effort of use cases in discrete categories (e.g.,
draft versus implemented); this is more realistic than trying to track, for
example, percent completion of each individual use case, and more accu-
rate than simply counting the number of use cases in each category. This
section describes the process for generating reports similar to those shown
in Figures 8.3 and 8.4.

Figure D.2 provides an MS Access query to join data from the project port-
folio database with that of the use case CM database. The fields shown are
those needed to generate project portfolio progress reports. Notice how the
query prefixes the project start date to project code; this field forms the
X-axis of Figures 8.3 and 8.4. The results of this query are used in the pivot
table of Figure D.3 to organize the data for graphing in Excel or your
favorite graphing application.

284 APPENDIX D

Figure D.2 Query to generate data for reports like those of Figures 8.3 and 8.4. Field “Project” will appear on
X-axis and is a composite of project start date prefixed to project code. Results of this query
provide input to the pivot table of Figure D.3.

REPORTS FOR TRACKING PROGRESS OF PROJECTS IN PORTFOLIO 285

Figure D.3 Pivot table to organize data for graphing. Results of this pivot table provide input to Excel to
produce a chart like that of Figures 8.3 and 8.4.

This page intentionally left blank

Ambler, Scott. “Enterprise Unified Process,” Available at http://
www.enterpriseunifiedprocess.info/.

Akao, Yoji. 1997. QFD: Past, Present, and Future. Presented at International
Symposium on QFD.

Armour, Frank, and Granville Miller. 2001. Advanced Use Case Modeling.
Boston: Addison-Wesley.

Beck, Kent, and Martin Fowler. 2001. Planning Extreme Programming.
Boston: Addison-Wesley.

Beizer, Boris. 1990. Software Testing Techniques, 2nd ed. New York: Van
Nostrand Reinhold.

Binder, Robert. 2000. Testing Object-Oriented Systems: Models, Patterns, and
Tools. Boston: Addison-Wesley.

Boehm, Barry. 1981. Software Engineering Economics. Englewood Cliffs, NJ:
Prentice Hall.

287

References

http://www.enterpriseunifiedprocess.info/
http://www.enterpriseunifiedprocess.info/

Broekman, Bart, and Edwin Notenboom. 2003. Testing Embedded Software.
Boston: Addison-Wesley.

Charan, Ram, What the CEO Wants You to Know, Publisher: Crown
Business; 1st edition (February 13, 2001).

Cockburn, Alistair. 2000. Writing Effective Use Cases. Boston: Addison-
Wesley.

———. 2002. Use Cases, Ten Years Later. Software Testing and Quality
Engineering (STQE) Magazine, March/April, vol. 4, no. 2.

Cohen, Lou. 1995. Quality Function Deployment: How to Make QFD Work
for You, Boston: Addison-Wesley.

Coleman, Derek, Patrick Arnold, Stephanie Bodoff, Chris Dollin, Helena
Gilchrist, Fiona Hayes, and Paul Jeremaes. 1994. Object-Oriented
Development: The Fusion Method, Object-Oriented Series edition.
Englewood Cliffs, NJ: Prentice Hall.

Cooper, Robert, Scott Edgett, and Elko Kleinschmidt. 1998. Portfolio
Management for New Products, Boston: Addison-Wesley.

Date, C.J. 2000. What Not How: The Business Rules Approach to Application
Development. Boston: Addison-Wesley.

Davis, Alan. 1995. 201 Principles of Software Development. New York:
McGraw-Hill.

———.1993. Software Requirements: Object, Functions, and States. Upper
Saddle River, NJ: Prentice Hall.

Day, Ronald G. 1993. Quality Function Deployment: Linking a Company
with its Customers. Milwaukee, WI: ASQC Quality Press.

DeMarco, Tom. 2001. Slack. New York: Broadway Books.

Futrell, Robert, Donald Shafer, and Linda Shafer. 2002. Quality Software
Project Management, Upper Saddle River, NJ: Prentice Hall.

288 REFERENCES

Gauss, Donald, and Gerald Weinberg. 1989. Exploring Requirements:
Quality Before Design. New York: Dorset House Publishing.

Gelperin, David. “Precise Use Cases.” Available at http://www.livespecs.com/.

Gluch, David P., Santiago Comella-Dorda, John Hudak, Grace Lewis, and
Chuck Weinstock. 2002. “Model-Based Verification: Guidelines for
Generating Expected Properties.” Technical note, CMU/SEI-2002-TN-003,
Carnegie Mellon, Software Engineering Institute.

Gries, David, and Fred B. Schneider. 1993. A Logical Approach to Discrete
Math, New York: Springer-Verlag.

Haag, Stephen, M.K. Raja, and L.L. Schkade. 1996. “Quality Function
Deployment Usage in Software Development.” Communications of the
ACM, vol. 39(1), January.

Hass, Anne Mette Jonassen. 2003. Configuration Management Principles
and Practices. Boston: Addison-Wesley.

Highsmith III, James. 2000. Adaptive Software Development. New York:
Dorsett House Publishing.

Jacobson, Ivar, Magnus Christerson, Patrik Jonsson, and Gunnar
Overgaard. 1992. Object-Oriented Software Engineering: A Use Case Driven
Approach, Boston: Addison-Wesley.

Jacobson, Ivar. 2003. “Use Cases: Yesterday, Today, and Tomorrow.” The
Rational Edge, March.

Johannessen, Per, Christian Grante, Anders Alminger, Ulrik Eklund
(VolvoCar Corporation), and Jan Torin. 2001. “Hazard Analysis in Object
Oriented Design of Dependable Systems.” Presented at IEEE International
Conference on Dependable Systems and Networks.

Jones, Cliff B. 2003. “The Early Search for Tractable Ways of Reasoning
about Programs.” IEEE Annals of the History of Computing, April-June, Vol.
25, No. 2.

REFERENCES 289

http://www.livespecs.com/

Juran, J.M., and Frank M. Grynam. 1988. Juran’s Quality Control Handbook,
Fourth Edition. Texas: McGraw-Hill.

Lamia, Walter. 1995. “Integrating QFD with Object-oriented Software
Design Methodologies.” Presented at the 7th Symposium on QFD.

Leffingwell, Dean. 2003. “Calculating Your Return on Investment from
More Effective Requirements Management.” IBM/Rational tech report,
June. Available at http://www-128.ibm.com/developerworks/rational/
library/347.html.

Leffingwell, Dean, and Don Widrig. 2003. Managing Software
Requirements: A Use Case Approach. 2nd. ed. Boston: Addison-Wesley.

McCarthy, Jim. 1995. Dynamics of Software Development. Redmond,
Washington: Microsoft Press.

McConnell, Steve. 1996. Rapid Development. Redmond, Washington:
Microsoft Press.

Meyer, Bertrand. 1988. Object-Oriented Software Construction. 1st ed.
Upper Saddle River, NJ: Prentice Hall.

Moore, Geoffrey. 1991. Crossing the Chasm, New York: HarperBusiness.

Musa, John D., Anthony Iannino, and Kazuhira Okumoto. 1990. Software
Reliability: Professional Edition. New York: McGraw-Hill.

Payne, Jeffery E. 1999. “Quality Meets The CEO: How To Get Management
Buy-In.” Software Testing and Quality Engineering (STQE) Magazine,
May/June, vol. 1, issue 3.

PMBOK Guide. 2000. A Guide to the Project Management Body of
Knowledge. Newston Square, PA: Project Management Institute.

Rumbaugh, James, Ivar Jacobson, and Grady Booch. 2005. The Unified
Modeling Language Reference Manual. 2nd. ed. Boston: Addison-Wesley.

290 REFERENCES

http://www-128.ibm.com/developerworks/rational/library/347.html
http://www-128.ibm.com/developerworks/rational/library/347.html

Runeson, Per, and Björn Regnell. 1998. “Derivation of an Integrated
Operational Profile and Use Case Model.” Proceedings of 9th International
Symposium on Software Reliability Engineering (ISSRE’98).

Schneider, Geri, and Jason Winters. 1998. Applying Use Cases: A Practical
Guide. Boston: Addison-Wesley.

Sommerville, Ian. 2000. Software Engineering, 6th Edition. Boston:
Addison-Wesley.

Storey, Neil. 1996. Safety-Critical Computer Systems. Boston: Addison-
Wesley.

Warmer, Jos, and Anneke Kleppe. 1999. The Object Constraint Language:
Precise Modeling with UML. Boston: Addison-Wesley.

Weinberg, Gerald, and Daniela Weinberg. 1988. General Principles of
System Design. New York: Dorset House Publishing.

Weller, Ed. 2002. “Calculating the Economics of Inspections.” Available at
http://www.stickyminds.com/.

Wiegers, Karl. 1999. Software Requirements. 1st ed. Redmond, WA:
Microsoft Press.

———. 2000. “Karl Wiegers Describes 10 Requirements Traps to Avoid.”
Software Testing and Quality Engineering (STQE) Magazine,
January/February, vol. 2, no. 1.

Wyder, Todd. 1996. “Capturing requirements with use cases.” Software
Development Magazine. February. Available online at http://www.
sdmagazine.com/.

REFERENCES 291

http://www.stickyminds.com/
http://www.sdmagazine.com/
http://www.sdmagazine.com/

This page intentionally left blank

A
abstract use cases, 93
abstraction, level needed for project

portfolio management, 244-245
Access for project portfolio

management, 243
algebraic solution, calculating

preconditions from postconditions,
169-172

allocation of resource by project type
(project portfolio management),
246-247

comparing target to actual allocation,
254-255, 274-276

estimating effort needed for use cases,
251-253

inventory of projects, 247-249, 273-274
use case metadata needed,

250-251, 274

B
basemaps in oil and gas exploration, 271
base use cases, 91

include and extend use cases with,
95-98

benefit to cost ratio, calculating ROI, 237
benefits, calculating ROI, 229-236
bottom-up planning strategy, 85

operational profile usage example,
87-89

boundary condition failures, 180-182
brainstorming, importance in QFD, 29
business drivers, 6

identifying
Mega Motors example (QFD

overview), 17-18
Oil & Gas Exploration Systems

example (cross-company
decision making), 54-55

293

Index

Page numbers followed by n signify footnotes.

prioritization
importance of, 11-12
Mega Motors example (QFD

overview), 19-23
prototyping, Mega Motors example

(QFD overview), 18-19
QFD in, 9-11
relationship to use cases

Mega Motors example (QFD
overview), 23-32

Oil & Gas Exploration Systems
example (cross-company
decision making), 55-56

C
chaos of projects, 11
chaos theory, deterministic chaos, 11
class invariants, 188
CM, project portfolio management,

241-244
current allocation of projects, 246-247

comparing target to actual
allocation, 254-255, 274-276

estimating effort needed for use
cases, 251-253

inventory of projects, 247-249,
273-274

use case metadata needed,
250-251, 274

pipeline management, 255
FTE models, 256
FTE run charts, 257-259, 277-282

tracking portfolio status, 259-264,
283-285

use cases in, 244-245
communication gap between

requirements types, 6-7
constant failure rate, 124

constraints, transition constraints,
190-191

correlations between quality
requirements, analyzing (Mega
Motors example), 41-42

correlations between use cases
analyzing, Mega Motors example (QFD

overview), 32-34
resolving negative correlations, Mega

Motors example (QFD overview),
37-38

cost
calculating ROI, 225-229
of fully burdened employees, 224

critical use cases
defined, 110
operational profiles for, 109-118

cross sections in oil and gas
exploration, 271

cross-company decision making (Oil &
Gas Exploration Systems example),
50-60, 269-272

customers versus users, 6n

D
dashboard (tracking reliability), 138-139

initializing, 142-145
layout of, 139-141
progress over time, 152-153
test coverage tracking, 141-152
updating, 145-152

data invariants, 188
DDE (Defect Detection Effectiveness),

153-156
decision graphs, 79-82
Defect Detection Effectiveness (DDE),

153-156

294 INDEX

Page numbers followed by n signify footnotes.

defect detection percentage, 156
defect removal effectiveness (DRE), 156,

234-235
designing test cases

Extended Use Case Test Design
Pattern, 200

building test cases, 209-213
domain definitions of operational

variables, 202-203
operational relation development,

203-208
operational variables, identifying,

201-202
invariants, 198-200
postconditions, 198
preconditions, 198

dev kits (Oil & Gas Exploration Systems
example)

prioritizing, 59
selecting, 51-52

distributed development, synchronizing
(Oil & Gas Exploration Systems
example), 61-72

domain analysis, 209n
domain definition of variables, 181

operational variables, 202-203
state variables, 188

DRE (defect removal effectiveness), 156,
234-235

dynamic, reliability as, 123

E
earth modeling techniques, prioritizing

(Oil & Gas Exploration Systems
example), 58-59

effectiveness of testing, 153-156

efficiency versus effectiveness, 156
efficiency of staff, savings from, 229-230
effort needed for use cases, estimating

(project portfolio management),
251-253

80/20 rule (Pareto Principle), 82-85
setting failure intensity objectives,

136-138
electrical resistivity in oil and gas

exploration, 270
entropy in distributed software

development, 61-64
estimating effort needed for use cases

(project portfolio management),
251-253

Evolver (Excel add-in), 70
examples

Mega Motors example (QFD overview),
12-47

Oil & Gas Exploration Systems example
cross-company decision making,

50-60, 269-272
distributed development

synchronization, 61-72
exponential failure law

defined, 124
setting failure intensity objectives,

133-136
extend relationship (between use

cases), 91
extend use cases

with base use cases, 95-98
probability of usage, 98-101
standalone, 94-95

Extended Use Case Test Design
Pattern, 200

building test cases, 209-213

INDEX 295

Page numbers followed by n signify footnotes.

operational relation development,
203-208

operational variables
domain definitions of, 202-203
identifying, 201-202

extension (set theory), 206n
extension use cases, 91
Extreme Programming (XP) stories,

estimating effort, 252

F
failure analysis. See also Hazard

Identification and Analysis
boundary condition failures, 180-182
invariants

boundary condition failures,
180-182

calculating preconditions from
postconditions, 167-172

global invariants, 187-189, 199
local invariants, 187, 190-191
modeling state change, 172-180
relationship with preconditions and

postconditions, 193-195
scope of, 188n
similarity to safety requirements

(safety invariants), 187
in test case design, 198-200
types of, 187

postconditions, 161-163
boundary condition failures,

180-182
calculating preconditions from,

165-172
history of, 163-165
modeling state change, 172-180
multiple preconditions for, 185

relationship with preconditions and
invariants, 193-195

scope of, 184-185
in test case design, 198
for individual operations versus

use cases, 183-184
preconditions, 161-163

boundary condition failures,
180-182

calculating from postconditions,
165-172

history of, 163-165
modeling state change, 172-180
multiple preconditions for

postconditions, 185
relationship with postconditions

and invariants, 193-195
scope of, 184-185
in test case design, 198
for individual operations versus use

cases, 183-184
weak versus strong preconditions,

185-186
failure intensity, 124, 126

failure intensity objective, setting,
129-138

reliability growth curves, 127-128
tracking, 138, 143
units of measurement, 128-129

failure intensity objective, setting,
129-138

“flipping the matrix” (QFD)
matching use cases to quality

requirements, 35-37
matching use cases to vehicle

components, 43-44
frequency, defined, 110

296 INDEX

Page numbers followed by n signify footnotes.

frequency of failure, calculating risk,
113-114

frequency of use in operational profiles.
See operational profiles

FTE (Full Time Equivalent) models, 256
run charts through time, 257-259,

277-282
fully burdened employees, accounting for

cost in calculating ROI, 224

G
Gantt charts, 258
generalization relationship (between use

cases), 91
geology in oil and gas exploration, 51
geophysics in oil and gas exploration, 51
global invariants, 187-189, 199
guesstimates. See Pareto Principle

H
hardware reliability versus software

reliability, 126
Hazard Identification and Analysis,

168, 187. See also failure analysis;
safety requirements (safety
invariants)

high-level planning, transition to
low-level planning, 105-107

high scores, restricting, 56
historical data, estimating effort

using, 252
history of preconditions and

postconditions, 163-165

I
include relationship (between use

cases), 91
include use cases, 91

with base use cases, 95-98
probability of usage, 98-101
standalone, 94-95

independent operational variables, 202
initializing dashboard (tracking

reliability), 142-145
intension (set theory), 206n
interpreters in oil and gas

exploration, 270
invariants. See also safety requirements

(safety invariants)
boundary condition failures, 180-182
calculating preconditions from

postconditions, 167-172
global invariants, 187-189, 199
local invariants, 187, 190

transition constraints, 190-191
modeling state change, 172-180
relationship with preconditions and

postconditions, 193-195
scope of, 188n
in test case design, 198-200
types of, 187

inventory of projects for project portfolio
management, 247-249, 273-274

iterations in distributed software
development, 64-72

J-K
Juran, Joseph, use of Pareto Principle, 82

known defects, tracking, 138, 143

L
language gap between requirements

types, 6-7
law of large numbers, 251

INDEX 297

Page numbers followed by n signify footnotes.

line-of-section in oil and gas
exploration, 271

local invariants, 187, 190
transition constraints, 190-191

log templates in oil and gas
exploration, 270

low-level planning, transition from
high-level planning, 105-107

M
matrix, decision graph as, 81. See also

QFD matrix
Mean Time Between Failure (MTBF), 128n
Mean Time To Failure (MTTF), 128

setting failure intensity objectives,
133-136

Mean Time to Repair (MTTR), 128n
metadata, 246

needed for project portfolio
management, 250-251, 274

model-based specification, 174
application to numeric problems, 193
boundary condition failures, 180-182
invariants

boundary condition failures,
180-182

calculating preconditions from
postconditions, 167-172

global invariants, 187-189, 199
local invariants, 187, 190-191
modeling state change, 172-180
relationship with preconditions and

postconditions, 193-195
scope of, 188n
similarity to safety requirements

(safety invariants), 187
in test case design, 198-200
types of, 187

numeric nature of, 193
postconditions, 161-163

boundary condition failures,
180-182

calculating preconditions from,
165-172

history of, 163-165
modeling state change, 172-180
multiple preconditions for, 185
relationship with preconditions and

invariants, 193-195
scope of, 184-185
in test case design, 198
for individual operations versus use

cases, 183-184
preconditions, 161-163

boundary condition failures,
180-182

calculating from postconditions,
165-172

history of, 163-165
modeling state change, 172-180
multiple preconditions for

postconditions, 185
relationship with postconditions

and invariants, 193-195
scope of, 184-185
in test case design, 198
for individual operations versus use

cases, 183-184
weak versus strong preconditions,

185-186
prioritizing, 192
and test case design

Extended Use Case Test Design
Pattern, 200-213

invariants, 198-200

298 INDEX

Page numbers followed by n signify footnotes.

postconditions, 198
preconditions, 198

modeling state change, 172-180
modeling techniques, prioritizing (Oil &

Gas Exploration Systems example),
58-59

MTBF (Mean Time Between Failure), 128n
MTTF (Mean Time To Failure), 128

setting failure intensity objectives,
133-136

MTTR (Mean Time to Repair), 128n
multiple preconditions for

postconditions, 185

N
negative correlations between quality

requirements, analyzing (Mega
Motors example), 41-42

negative correlations between use cases
analyzing, Mega Motors example (QFD

overview), 32-34
resolving, Mega Motors example (QFD

overview), 37-38
non-functional requirements, prioritizing

(Oil & Gas Exploration Systems
example), 56-58. See also quality
requirements

O
oil and gas exploration, overview, 50-51
one-by-one domain testing strategy, 210
open defects, tracking, 138, 143
operational profiles, 77

for critical use cases, 109-118
test coverage, tracking, 138, 141-152
for use case packages, 90

UML use case relationships,
92-101, 104

usage examples, 104-109
for use case scenarios, 78-79

decision graphs, 79-82
Pareto Principle, 82-85
usage examples, 85-89

operational relation, development of,
203-208

operational variables
domain definitions of, 202-203
identifying, 201-202

optimization problems, 69
order of magnitude estimates (severity of

use case failures), 115

P
packages of use cases, operational

profiles for, 90
UML use case relationships,

92-101, 104
usage examples, 104-109

Pareto Principle (80/20 rule), 82-85
setting failure intensity objectives,

136-138
Pareto, Vilfredo, 82
perceived reliability, 77
petrophysics in oil and gas

exploration, 51
pipeline management, 242, 255

FTE models, 256
FTE run charts, 257-259, 277-282

planning
iterations (distributed software

development), 64-72
operational profile usage in, 85-89,

104-109
portfolio management, 241-244

current allocation of projects, 246-247

INDEX 299

Page numbers followed by n signify footnotes.

comparing target to actual
allocation, 254-255, 274-276

estimating effort needed for use
cases, 251-253

inventory of projects, 247-249,
273-274

use case metadata needed,
250-251, 274

pipeline management, 255
FTE models, 256
FTE run charts, 257-259, 277-282

tracking portfolio status, 259-264,
283-285

use cases in, 244-245
postconditions, 161-163

boundary condition failures, 180-182
calculating preconditions from,

165-172
history of, 163-165
modeling state change, 172-180
multiple preconditions for, 185
relationship with preconditions and

invariants, 193-195
scope of, 184-185
in test case design, 198
for individual operations versus use

cases, 183-184
preconditions, 161-163

boundary condition failures, 180-182
calculating from postconditions,

165-172
history of, 163-165
modeling state change, 172-180
multiple preconditions for

postconditions, 185
relationship with postconditions and

invariants, 193-195

scope of, 184-185
in test case design, 198
for individual operations versus use

cases, 183-184
weak versus strong preconditions,

185-186
prioritizing

business drivers, Mega Motors
example (QFD overview), 19-23

importance of, 11-12
model-based specification, 192
modeling techniques, Oil & Gas

Exploration Systems example
(cross-company decision
making), 58-59

non-functional requirements, Oil &
Gas Exploration Systems example
(cross-company decision
making), 56-58

quality requirements, Mega Motors
example (QFD overview), 39-41

shared earth modeling
development kit, Oil & Gas
Exploration Systems example
(cross-company decision
making), 59

use cases
Mega Motors example (QFD

overview), 26-32
Oil & Gas Exploration Systems

example (cross-company
decision making), 54-56

probabilities
include and extend use case usage,

98-103
of use case scenarios, calculating,

79-80

300 INDEX

Page numbers followed by n signify footnotes.

project portfolio management, 241-244
current allocation of projects, 246-247

comparing target to actual
allocation, 254-255, 274-276

estimating effort needed for use
cases, 251-253

inventory of projects, 247-249,
273-274

use case metadata needed,
250-251, 274

pipeline management, 255
FTE models, 256
FTE run charts, 257-259, 277-282

tracking portfolio status, 259-264,
283-285

use cases in, 244-245
projects, chaos of, 11
projects in oil and gas exploration, 270
pros and cons analysis, 20
prototyping business drivers, Mega

Motors example (QFD overview),
18-19

Q
QFD (Quality Function Deployment), 7

brainstorming, importance of, 29
in business drivers, 9-11
cross-company decision making

(Oil & Gas Exploration Systems
example), 50-60, 269-272

distributed development
synchronization (Oil & Gas
Exploration Systems example),
61-72

high scores, restricting, 56
prioritization, importance of, 11-12
traceability in, 46
in use cases, 8-9

Mega Motors example (QFD
overview), 12-47

QFD matrix
components of, 15-16
iterations (distributed software

development), planning, 64-72
matching use cases to quality

requirements, 35-37
matching use cases to vehicle

components, 43-44
modeling techniques, prioritizing,

58-59
non-functional requirements,

prioritizing, 56-58
prioritized business drivers, entering,

22-23
and sequence diagrams, 61-64
shared earth modeling development

kit, prioritizing, 59
use cases

entering, 25-26
prioritizing, 54-56

QFD road map (Oil & Gas Exploration
Systems example), 52-53

Quality Function Deployment. See QFD
quality requirements (Mega Motors

example). See also non-functional
requirements

analyzing correlations, 41-42
identifying, 38-39
matching to use cases, 35-37
prioritizing, 39-41

quantifiable, reliability as, 124-125

INDEX 301

Page numbers followed by n signify footnotes.

R
ratio of effort to percentage-point of use

for use cases, 107-109
relations, development of operational

relation, 203-208
relations, implemented as a table,

203-204
relationships between use cases,

92-101, 104
reliability

DDE (Defect Detection Effectiveness),
153-156

defined, 122-123
failure intensity, 126

failure intensity objective, setting,
129-138

reliability growth curves, 127-128
units of measurement, 128-129

hardware versus software reliability, 126
perceived reliability, 77
as quantifiable, 124-125
testing to demonstrate, 136
tracking, 138-139

dashboard layout, 139-141
progress over time, 152-153
test coverage, 141-152

as user-centric and dynamic, 123
reliability growth curves, 127-128
requirements attributes (metadata), 246

needed for project portfolio
management, 250-251, 274

requirements management tools
(ROI), 223

benefit to cost ratio, 237
benefits, 229-236
cost, 225-229
starting assumptions, 224-225
uncertainty in model, 238

requirements types, language gap
between, 6-7

requirements-related defects, savings
from reducing, 232-236

resource graphs, 258-259, 277
restricting high scores, 56
return on investment. See ROI
review and rigor, accounting for cost in

calculating ROI, 227-229
risk, calculating, 110-118
risk exposure

calculating, 116-117
defined, 110

ROI (return on investment), 221-222
calculating, 223

benefit to cost ratio, 237
benefits, 229-236
cost, 225-229
starting assumptions, 224-225
uncertainty in model, 238

run charts (FTE) through time (project
portfolio management), 257-259,
277-282

S
safety requirements (safety invariants),

168, 187-188n, 195
savings, calculating ROI, 229-236
scenarios, operational profiles for, 78-79

decision graphs, 79-81
Pareto Principle, 82-85
usage examples, 85-89

scope
of invariants, 188n
of preconditions and postconditions,

184-185
seismic surveys in oil and gas

exploration, 271

302 INDEX

Page numbers followed by n signify footnotes.

selecting test points, 209-211
sequence diagrams and QFD matrix,

61-64
set comprehension, 206n
set enumeration, 206n
severity of failure

calculating risk, 114-116
order of magnitude estimates, 115
setting failure intensity objectives,

131-133
shared earth modeling development kit

(Oil & Gas Exploration Systems
example)

prioritizing, 59
selecting, 51-52

software reliability
DDE (Defect Detection Effectiveness),

153-156
defined, 122-123
failure intensity, 126

failure intensity objective, setting,
129-138

reliability growth curves, 127-128
units of measurement, 128-129

hardware versus software
reliability, 126

perceived reliability, 77
as quantifiable, 124-125
testing to demonstrate, 136
tracking, 138-139

dashboard layout, 139-141
progress over time, 152-153
test coverage, 141-152

as user-centric and dynamic, 123
spreadsheet matrix, decision graph as, 81
staff churn, savings from avoiding,

230-231

staff efficiency, savings from, 229-230
starting assumptions, calculating ROI,

224-225
state invariants, 188
state variables

domain definition, 181, 188
in model-based specification, 174
modeling state change, 172-180

status of portfolio, tracking, 259-264,
283-285

stopping testing, 138-139
dashboard layout, 139-141
progress over time, 152-153
test coverage, 141-152

stories (XP), estimating effort, 252
storyboarding, 13
stratigraphic columns in oil and gas

exploration, 270
strong preconditions versus weak

preconditions, 182, 185-186
Swamp Report (tracking reliability),

138-139
initializing, 142-145
layout of, 139-141
progress over time, 152-153
test coverage tracking, 141-152
updating, 145-152

synchronizing distributed development
(Oil & Gas Exploration Systems
example), 61-72

system requirements, 6

T
target allocation of projects, comparing

to actual allocation (project
portfolio management), 254-255,
274-276

INDEX 303

Page numbers followed by n signify footnotes.

test case design
Extended Use Case Test Design

Pattern, 200
building test cases, 209-213
domain definitions of operational

variables, 202-203
operational relation development,

203-208
operational variables, identifying,

201-202
invariants, 198-200
postconditions, 198
preconditions, 198

test coverage, tracking, 138, 141-152
test points, 198

selecting, 209-211
usage in test cases, 211-213

tester days, defined, 127n
testing. See also reliability

to demonstrate reliability, 136
effectiveness of, 153-156
invariants

boundary condition failures,
180-182

calculating preconditions from
postconditions, 167-172

global invariants, 187-189, 199
local invariants, 187, 190-191
modeling state change, 172-180
relationship with preconditions and

postconditions, 193-195
scope of, 188n
in test case design, 198-200
types of, 187

postconditions, 161-163
boundary condition failures,

180-182

calculating preconditions from,
165-172

history of, 163-165
modeling state change, 172-180
multiple preconditions for, 185
relationship with preconditions and

invariants, 193-195
scope of, 184-185
in test case design, 198
for individual operations versus use

cases, 183-184
preconditions, 161-163

boundary condition failures,
180-182

calculating from postconditions,
165-172

history of, 163-165
modeling state change, 172-180
multiple preconditions for

postconditions, 185
relationship with postconditions

and invariants, 193-195
scope of, 184-185
in test case design, 198
for individual operations versus use

cases, 183-184
weak versus strong preconditions,

185-186
when to stop, 138-139

dashboard layout, 139-141
progress over time, 152-153
test coverage, 141-152

thrashing, similarity of projects to CPU
thrashing, 242

time-boxing planning strategy, 85
operational profile usage example,

86-87, 104-105

304 INDEX

Page numbers followed by n signify footnotes.

tool and process rollout, accounting for
cost in calculating ROI, 226

tool use overhead, accounting for cost in
calculating ROI, 226-227

traceability in QFD, 46
tracking

portfolio status, 259-264, 283-285
reliability, 138-139

dashboard layout, 139-141
progress over time, 152-153
test coverage, 141-152

training, accounting for cost in calculat-
ing ROI, 226

transition constraints, 190-191

U
UML use case relationships, 92-101, 104
uncertainty in model, calculating

ROI, 238
Unified Software Development

Process, 121n
units of measurement for failure

intensity, 128-129
unnecessary development, savings from

avoiding, 231
updating dashboard (tracking reliability),

145-152
use case packages, operational profiles

for, 90
UML use case relationships,

92-101, 104
usage examples, 104-109

use case points (estimating effort), 252
use case scenarios, operational profiles

for, 78-79
decision graphs, 79-81
Pareto Principle, 82-85
usage examples, 85-89

use cases
analyzing correlations, Mega Motors

example (QFD overview), 32-34
critical use cases, operational profiles

for, 109-118
estimating effort needed (project

portfolio management), 251-253
identifying, Mega Motors example

(QFD overview), 23-26
importance of, 7
matching to quality requirements,

Mega Motors example (QFD
overview), 35-37

matching to vehicle components,
Mega Motors example (QFD
overview), 43-44

metadata, 246
needed for project portfolio

management, 250-251, 274
in Oil & Gas Exploration Systems

example (cross-company
decision making), 269-272

preconditions and postconditions
versus for individual operations,
183-184

prioritizing
Mega Motors example (QFD

overview), 26-32
Oil & Gas Exploration Systems

example (cross-company
decision making), 54-56

in project portfolio management,
244-245

QFD in, 8-9
Mega Motors example (QFD

overview), 12-47
ratio of effort to percentage-point of

use, 107-109

INDEX 305

Page numbers followed by n signify footnotes.

relationship to non-functional
requirements, Oil & Gas
Exploration Systems example
(cross-company decision
making), 57

resolving negative correlations, Mega
Motors example (QFD overview),
37-38

tracking portfolio status, 259-264,
283-285

user requirements, 6
user-centric, reliability as, 123
users versus customers, 6n

V
validity. See invariants
variables

operational variables
domain definitions of, 202-203
identifying, 201-202

state variables
domain definition, 181, 188
in model-based specification, 174
modeling state change, 172-180

vehicle components, matching to use
cases (Mega Motors example), 43-44

W-Z
WAG method (estimating effort), 252
weak preconditions versus strong

preconditions, 182, 185-186
well-logging in oil and gas exploration,

51, 270
wells in oil and gas exploration, 270
Wideband Delphi, 19-21, 238, 253
Wiegers, Karl, 6

XP stories, estimating effort, 252

306 INDEX

Page numbers followed by n signify footnotes.

This page intentionally left blank

If you are interested in writing a book or reviewing
manuscripts prior to publication, please write to us at:

Editorial Department
Addison-Wesley Professional
75 Arlington Street, Suite 300
Boston, MA 02116 USA
Email: AWPro@aw.com

Visit us on the Web: http://www.awprofessional.com

You may be eligible to receive:

• Advance notice of forthcoming editions of the book

• Related book recommendations

• Chapter excerpts and supplements of forthcoming titles

• Information about special contests and promotions

throughout the year

• Notices and reminders about author appearances,

tradeshows, and online chats with special guests

at www.awprofessional.com/register

www.awprofessional.com/register
http://www.awprofessional.com

Wouldn’t it be great
if the world’s leading technical

publishers joined forces to deliver
their best tech books in a common

digital reference platform?

They have. Introducing
InformIT Online Books

powered by Safari.

� Specific answers to specific questions.
InformIT Online Books’ powerful search engine gives you
relevance-ranked results in a matter of seconds.

� Immediate results.
With InformIT Online Books, you can select the book
you want and view the chapter or section you need
immediately.

� Cut, paste and annotate.
Paste code to save time and eliminate typographical
errors. Make notes on the material you find useful and
choose whether or not to share them with your work
group.

� Customized for your enterprise.
Customize a library for you, your department or your entire
organization. You only pay for what you need.

in
fo

rm
it

.c
o
m

/
o
n
li

n
e
b
o
o
k
s

Get your first 14 days FREE!
For a limited time, InformIT Online Books is offering

its members a 10 book subscription risk-free for

14 days. Visit http://www.informit.com/online-

books for details.

On
lin

e
Bo

ok
s

http://www.informit.com/onlinebooks
http://www.informit.com/onlinebooks

www.informit.com

YOUR GUIDE TO IT REFERENCE

Articles

Keep your edge with thousands of free articles, in-

depth features, interviews, and IT reference recommen-

dations – all written by experts you know and trust.

Online Books

Answers in an instant from InformIT Online Book’s 600+

fully searchable on line books. For a limited time, you can

get your first 14 days free.

Catalog

Review online sample chapters, author biographies

and customer rankings and choose exactly the right book

from a selection of over 5,000 titles.

www.informit.com

	Cover
	Contents
	Preface
	Acknowledgments
	PART 1 QUALITY FUNCTION DEPLOYMENT
	Chapter 1 An Introduction to QFD: Driving Vision Vertically Through the Project
	The Language Gap
	QFD in Use Case-Driven Projects
	Running a QFD Workshop: Mega Motors Example
	Chapter Review

	Chapter 2 Aligning Decision Making and Synchronizing Distributed Development Horizontally in the Organization
	Using QFD to Align Decision Making Horizontally Across a Company
	Using QFD to Synchronize Distributed Development Horizontally Across Component Teams
	Chapter Review

	PART 2 SOFTWARE RELIABILITY ENGINEERING
	Chapter 3 Operational Profiles: Quantifying Frequency of Use of Use Cases
	Operational Profile of Use Case Scenarios
	Working Smarter: Scenarios of a Use Case
	Operational Profile of a Use Case Package
	Working Smarter: Use Case Packages
	Extending Operational Profiles to Address Critical Use Cases
	Chapter Review

	Chapter 4 Reliability and Knowing When to Stop Testing What Is “Reliability”?
	What Is “Reliability”?
	Failure Intensity
	The Swamp Report
	Determining the Effectiveness of Your SRE-Based Test Process
	Chapter Review

	PART 3 MODEL-BASED SPECIFICATION (PRECONDITIONS, POSTCONDITIONS, AND INVARIANTS)
	Chapter 5 Use Case Preconditions, Postconditions, and Invariants: What They Didn’t Tell You, But You Need to Know!
	Sanity Check Before Proceeding
	A Brief History of Preconditions and Postconditions
	Calculating Preconditions from Postconditions
	Why Does This Work?!
	Modeling State Change
	Model-Based Specification
	Reasoning About State Through Time
	Exploring Boundary Condition Failures
	Further Thoughts: Preconditions, Postconditions, and Invariants in Use Cases
	Working Smart in How You Apply What You’ve Learned
	Chapter Review

	Chapter 6 Triple Threat Test Design for Use Cases
	“Triple Threat” Test Cases?
	Applying the Extended Use Case Test Design Pattern
	Closing Thoughts
	Chapter Review

	PART 4 USE CASE CONFIGURATION MANAGEMENT
	Chapter 7 Calculating Your Company’s ROI in Use Case Configuration Management
	Overview of ROI
	Requirements Management Tools
	Calculating the ROI
	Conventions and Starting Assumptions
	The Cost
	The Benefits
	Bottom Line: Benefit to Cost Ratio
	Dealing with Uncertainty in the Model
	Chapter Review

	Chapter 8 Leveraging Your Investment in Use Case CM in Project Portfolio Management
	What this Chapter Is (and Isn’t) About
	The Good Thing About Use Cases…
	Use Case Metadata (Requirements Attributes)
	How Are You Currently Invested?
	Managing the Pipeline
	Tracking the Status of the Portfolio via Use Cases
	Chapter Review

	PART 5 APPENDICES
	Appendix A: Sample Use Case
	Appendix B: Bare-Bones Project Portfolio Database and Use Case Metadata
	Bare-Bones Portfolio Database

	Appendix C: Run Chart of FTEs Required by Project Portfolio
	Query to Sum Use Case Effort by Project Code

	Appendix D: Reports for Tracking Progress of Projects in Portfolio
	Metadata for Use Case Status

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

